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A B S T R A C T

In recent years, deep learning has been the key driver of breakthrough developments in computational
pathology and other image based approaches that support medical diagnosis and treatment. The underlying
neural networks as inherent black boxes lack transparency and are often accompanied by approaches to
explain their output. However, formally defining explainability has been a notorious unsolved riddle. Here, we
introduce a hypothesis-based framework for falsifiable explanations of machine learning models. A falsifiable
explanation is a hypothesis that connects an intermediate space induced by the model with the sample
from which the data originate. We instantiate this framework in a computational pathology setting using
hyperspectral infrared microscopy. The intermediate space is an activation map, which is trained with an
inductive bias to localize tumor. An explanation is constituted by hypothesizing that activation corresponds
to tumor and associated structures, which we validate by histological staining as an independent secondary
experiment.
1. Introduction

Classifications obtained from machine learning models in medical
applications are in general black-box decisions, and interpreting their
outcome is often considered key for making machine learning based
diagnoses or treatment decisions transparent and trustworthy (Abels
et al., 2019; Kelly et al., 2019; Holzinger et al., 2019; Rudin, 2019).
The power of deep learning based classification has become particularly
evident in image-based diagnostic settings, most notably in radiol-
ogy and pathology (Litjens et al., 2017; van der Laak et al., 2021),
where the need for interpretation has commonly been addressed by
approaches such as linear relevance propagation (LRP) (Bach et al.,
2015; Lapuschkin et al., 2019), saliency maps (Simonyan et al., 2013),
Grad-CAM (Selvaraju et al., 2017) or class activation maps (Zhou et al.,
2016). These methods operate in a post-hoc manner in the sense that
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they operate on the neural network after it has been trained. Using the
trained network along with an input image, they yield segmentations
or heatmap representations (Zech et al., 2018; Hägele et al., 2020; Ding
et al., 2019; Korbar et al., 2017; Bai et al., 2020; Hosny et al., 2018) that
localize relevant patterns and can be assessed by domain experts. How-
ever, while unveiling an interpretable output, existing approaches lack
a clear definition what constitutes a valid interpretation or explanation.

Ever since Lipton diagnosed the notion of interpretability to be ill-
defined (Lipton, 2018), several attempts have been made to define
interpretability and explainability in the context of machine learning
models, as surveyed in Roscher et al. (2020), Guidotti et al. (2018)
and Holzinger et al. (2019) and recently in Samek et al. (2021).
However, it has been stated explicitly that no consensus definition has
emerged, neither in a general sense (Guidotti et al., 2018) nor specific
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to biomedical image analysis (van der Laak et al., 2021). Montavon
et al. (2018) define an interpretation as a mapping of an abstract concept
into a domain that the human can make sense of, while an explanation is
the collection of features of the interpretable domain, that have contributed
for a given example to produce a decision. The lack of a clear definition
what an interpretation is has also been noted by Murdoch et al. (2019),
who embed an interpretation in a so-called data-science life cycle
and introduce the predictive, descriptive, relevant framework as a basis
for interpretable machine learning. Despite these attempts towards
definitions, apparently none has emerged as a consensus.

The challenge to define interpretability and explainability in the
context of experimental research stems from the seemingly dichoto-
mous approaches behind experimental research and machine learning.
Experimental research, on the one hand, is hypothesis-centric by fol-
lowing hypothetico-deductivism, where predictions derived from a gen-
eral and falsifiable hypothesis are applied to specific cases that either
corroborate or falsify the hypothesis. Machine learning, on the other
hand, derives general models from specific training examples and thus
follows inductive (Wolpert, 1996) (or sometimes transductive (Vapnik,
2006)) reasoning. In machine learning, human expert-centric studies
are common and legitimate practice in the sense that models are trained
inductively on ground truth labels obtained from a human expert or a
panel of human experts (Bulten et al., 2020; Abels et al., 2019; Amgad
et al., 2019; Sirinukunwattana et al., 2017). In the context of deductive
experimental research, however, it appears reasonable if not inevitable
to define explainability in a hypothesis-centric manner rather than an
expert-centric manner. The early and remarkable work by Michalski
(1983) and related work by Mitchell et al. (1986) on concept learning
deserves credit for assigning the central role to hypotheses and explic-
itly addressing the problem of induction. Yet, Michalski’s approach of
learning structural descriptions from examples lacks an explicit role
of validating hypotheses in a deductive manner. The same problem
holds for more recently proposed frameworks by Murdoch et al. (2019)
and Roscher et al. (2020): Explanations as feedback cycles in these
frameworks only refer back to data, and thus inevitably underly the
limitations of inductive learning (Wolpert, 1996).

It has been well-established that weakly supervised learning, in
particular multiple instance learning in the context of computational
pathology, bears inherent interpretability (Lu et al., 2021), for example
obtained through the use of attention mechanisms (Ilse et al., 2018; Shi
et al., 2020b,a). In these works, datasets are given as bags of items,
and interpretability is obtained by inferring labels at the bag level
while only item levels are provided. In our present work, we abstract
this property of weakly supervised learning to a general concept of an
internal or intermediate space that is inferred by a machine learning
system.

Here, we introduce an abstract and generic framework for outcome
interpretation that is built upon a falsifiable hypothesis as the central
constituent. The framework involves a machine learning model whose
output yields, besides a classification outcome, an interpretable domain
which is explicitly inferred during training of the model. The underly-
ing hypothesis is formulated as a connection between the interpretable
domain and the sample from which input data to the classifier have
been obtained. Since the hypothesis refers to the sample rather than
the input data, specific predictions about the sample can be derived
from the hypothesis, which can thus be validated, i.e., corroborated or
falsified, by additional experiments.

We demonstrate the application of our framework in a computa-
tional pathology setting dealing with colorectal tissue samples. Specif-
ically, we introduce a weakly supervised deep convolutional neural
network approach for classifying cancer and localizing tumor in mi-
croscopic images of tissue thin sections. We primarily work on hyper-
spectral infrared (IR) microscopic images which at each pixel position
provide a location-specific biochemical fingerprint of the sample with
a spatial resolution of around 5 μm (Kallenbach-Thieltges et al., 2013;
Raulf et al., 2020). Our comparative segmentation network approach
(CompSegNet) is trained on sample labels only, but during training
infers a segmentation of tumor which facilitates a hypothesis-based
2

interpretation of classification outcome. t
Summary of contributions

Our main contribution is a framework for outcome explanation
of machine learning models which, to the best of our knowledge,
is the first such framework that overcomes the limitations of inher-
ently inductive supervised machine learning by involving deductive,
hypothesis-based reasoning. We instantiate this framework by a weakly
supervised learning approach which demonstrates how domain knowl-
edge is translated into hypothesis-guided inductive bias. The resulting
comparative segmentation network (CompSegNet) extends a previous
version for small tissue microarray spots to facilitate tumor segmen-
tation in whole-slide tissue images. In this context, the involvement of
domain knowledge leads to a novel, tissue image specific way of dealing
with pathology specific background.

2. Theory and calculations

2.1. A formal definition of model explanation

The computational approaches introduced here emerge from a for-
mal definition of model interpretation in machine learning that is
illustrated in Fig. 1. We assume a given machine learning model 𝑓
that classifies input 𝑥 ∈ 𝑋 derived from a specific sample as label
𝑦 = 𝑓 (𝑥). In this setting, interpretation requires an extension of the
machine learning model to infer additional interpretable output, so
that 𝑓 (𝑥) = (𝑦, ℎ) with ℎ ∈ 𝐼 . Here, 𝐼 is an interpretable space that is
inductively inferred while (or subsequent to) training 𝑓 . Formally, the
extension is thus a mapping 𝑓 ∶𝑋 → 𝑌 × 𝐼 , where 𝑋 is the space of
measured data, 𝑌 the space of supervised training labels, and 𝐼 is what
will henceforth be referred to as interpretable space, or I-space for short.
This allows us to define an explanation of 𝑓 (𝑥) = (𝑦, ℎ) as a falsifiable
hypothesis that establishes a connection between ℎ ∈ 𝐼 and the sample
from which data 𝑥 have been obtained. We will refer to hypotheses
satisfying this definition as falsifiable explanations of the underlying
machine learning model. The definition can be restricted further by
requiring the classification 𝑦 to be obtained purely on the grounds of
ℎ ∈ 𝐼 . Formally, this means that classification is performed in two
steps, where first ℎ = 𝑓 (𝑥) and subsequently 𝑦 = 𝑔(ℎ) is computed. In
this case, we refer to the space 𝐼 as an intermediary I-space, and corre-
spondingly define a hypothesis connecting ℎ with the original sample as
a falsifiable intermediary explanation of the classifier 𝑔◦𝑓 . Intermediary
explanations are obviously much stronger, since the classification can
be derived from the interpretable intermediate variable, while the less
restricted general falsifiable explanations allow ℎ to be computed fully
independent from 𝑦. Also, post-hoc interpretations (Bach et al., 2015;
Simonyan et al., 2013; Zhou et al., 2016; Selvaraju et al., 2017) can be
phrased in this framework. If the machine learning model is described
by 𝑀 in the space of all trainable models, its output can be denoted by
𝑓𝑀 (𝑥). The post-hoc interpretable space for input 𝑥 is then computed
through a function ℎ = 𝑔(𝑀,𝑥), and defining 𝑓 (𝑥) ∶= (𝑓𝑀 (𝑥), 𝑔(𝑀,𝑥))

atches the framework displayed in Fig. 1.
There are crucial differences between falsifiable explanations and

arlier attempts (Montavon et al., 2018; Murdoch et al., 2019; Roscher
t al., 2020) to define explainability and interpretability. First and
oremost, our approach refers back to the physical reality of the sample
rom which the data originate rather than just referring back to the
ata 𝑥 ∈ 𝑋. Second, we explicitly require an explanation to be a
alsifiable hypothesis. Earlier definitions of explainability commonly
nvolve understandability by a human expert. Our definition shifts
nderstandability towards the hypothesis, which is implicitly assumed
o be understandable by a human expert. Compared to Michalski
1983), the hypothesis is phrased ex-silico and outside the formalism of
tatistical learning, but within the rigor of hypothetico-deductive rea-
oning (Popper, 1959). By introducing a hypothesis, and by making this
ypothesis falsifiable through referring back to the sample rather than

he data obtained from it, our framework involves deductive reasoning.
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Fig. 1. Framework for a formal definition of machine learning model explanation. Con-
ventionally, supervised training of a machine learning model 𝑓 based on measurements
obtained from data space 𝑋 equipped with labels 𝑌 is an inductive step. Interpretation
is facilitated by extending 𝑓 to infer an additional output, so that 𝑓 (𝑥) = (𝑦, ℎ), where
𝑦 ∈ 𝑌 is a label and ℎ ∈ 𝐼 is additionally inferred output in an interpretable space 𝐼 . A
falsifiable explanation then is a hypothesis that connects ℎ with the sample from which
𝑥 originates.

To the best of our knowledge, our framework is the first approach that
addresses the inherent problem of induction (Wolpert, 1996) behind
supervised learning and, compared to related approaches (Michalski,
1983; Mitchell et al., 1986; Murdoch et al., 2019; Roscher et al., 2020)
aims to overcome it by involving deductivism.

2.2. A neural network approach facilitating falsifiable explanation.

We present the comparative segmentation network (CompSegNet) as
a weakly supervised neural network that yields an I-space through an
activation map which is trained on image labels only. A preliminary
version of the CompSegNet has been described earlier (Schuhmacher
et al., 2020). Here, we extend the CompSegNet to a falsifiable explain-
able model in the context of whole-slide infrared microscopic images
of histopathological tissue samples. In particular, we showcase how the
CompSegNet yields an I-space and facilitates a falsifiable intermedi-
ary explanation of a classifier that distinguishes cancer samples from
cancer-free samples.

As illustrated in Fig. 2, the CompSegNet is a U-Net (Ronneberger
et al., 2015) extended by a pooling neuron which accumulates acti-
vation from the output layer of the U-Net. Applied to distinguishing
cancerous samples from cancer-free samples, the loss function aims
to maximize pooled activation in images labeled as cancerous, while
minimizing pooled activation in images labeled as cancer-free. This loss
function invokes an inductive bias for the U-Net to localize structures
that are present in cancer samples only. In other words, we may hypoth-
esize that the CompSegNet localizes tumor and associated structures. It
must be emphasized that the I-space is the outcome of an inductive
process and thus formally decoupled from epistemic concepts such as
tumor. The concept of tumor is unmistakably characterizable on a
molecular basis. The hypothesis connects the inductively obtained I-
space with epistemic concepts from molecular reality, thus resolving
the epistemological opacity (Durán and Jongsma, 2021) of the model.

The hypothesis that activation in I-space corresponds to tumor,
henceforth referred to as tumor-activation hypothesis for short, is indeed
falsifiable. In the given setting, images have been obtained from hyper-
spectral infrared microscopy, which is particularly amenable to further
experimental characterization since the approach is staining-free, i.e., it
does not involve chemical staining of the sample. Consequently, the
sample is unaltered after infrared microscopic imaging and thus well
accessible for secondary experiments. Specifically, as a secondary vali-
dation of our hypothesis, we performed conventional hematoxylin and
eosin (H&E) staining, where tumor regions can be clearly identified,
and the hypothesis can thus be validated.
3

2.3. Network architecture

Our network is essentially an extended U-Net architecture (Ron-
neberger et al., 2015) that, as displayed in Fig. 2, receives as input an
image 𝑥𝑖 and produces the activation map ℎ𝑖 as an I-space variable from
which the output of the network function 𝑓 (𝑥𝑖) is computed through
a pooling neuron that performs a problem-specific piecewise linear
pooling. The activation map ℎ𝑖 is represented by a layer that has the
same spatial dimensions as the input image 𝑥𝑖, and each pixel neuron
in ℎ𝑖 uses a standard sigmoid activation function. The pooling neuron
performs average pooling, involving a problem-specific background
mask and thresholds described in detail below. Beside sigmoid transfer
function in the activation map and the extended optical dimensionality
of the input, we employed the widely established topology of the U-Net.
For the conventional H&E data, we use the U-net topology from Ron-
neberger et al. (2015) with an input dimensionality of 224 × 224 × 3. In
the experiments with the hyperspectral image data, the input size was
adapted to 256 × 256 with 427 optical channels at each pixel, while
the remaining layers of the network were unchanged.

We formally consider a microscopic image 𝑥 involving 𝑑 optical
channels as a mapping 𝑥∶𝛺 × [1 ∶ 𝑑] → R in a coordinate system
𝛺 with 𝑁 ×𝑁 pixels. We consider conventional light microscopic H&E
stained images involving 𝑑 = 3 channels and hyperspectral infrared
images where each pixel is represented by a spectrum involving 𝑑 =
427 wavenumbers. In a complete dataset 𝐗 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)},
each image 𝑥𝑖 is associated with a sample-level label 𝑦𝑖, with 𝑦𝑖 = 1
indicating a diseased sample, and 𝑦𝑖 = 0 indicating a healthy control
sample. As a notational convention, we denote the optical spectrum at
position 𝑗 ∈ 𝛺 by 𝑥𝑖(𝑗). The goal of training our network is to infer an
activation map ℎ𝑖 ∶𝛺 → [0, 1] that yields an I-space by localizing disease
patterns in the diseased samples: If 𝑥𝑖 is a cancer sample indicated by
𝑦𝑖 = 1, the output map ℎ𝑖(𝑗) should approach 1 precisely for those
positions 𝑗 where tumor or tumor-associated tissue is present, whereas
at all tumor-free positions 𝑗 in 𝑥𝑖, 𝑥𝑖(𝑗) should approach 0. Given a
healthy control image 𝑥𝑖, all positions should receive an activation close
to 0 in their activation map ℎ𝑖.

The topology, parameter space and loss function of the network are
explicitly tailored to accommodate modeling assumptions that adjust
the inductive bias of the training process. One particular property of
whole-slide-images to account for is sample background: On a mi-
croscopy slide with a tissue sample, the sample covers only a certain
fraction of the complete slide (see Fig. 4), and all positions not cov-
ered by tissue should be treated as irrelevant in the loss function. To
accommodate this nature of histopathological imaging data, positions
in the sample that are not covered by tissue need to be identified and
explicitly disregarded in certain parts of the loss function. To this end,
we introduce a binary background mask 𝐵𝑖. We indicate 𝐵𝑖(𝑗) = 1
if pixel 𝑗 in image 𝑖 is covered by tissue (regardless of whether the
covering tissue is tumorous or tumor-free), and 𝐵𝑖(𝑗) = 0 otherwise.
For both infrared microscopic images and H&E stained images, 𝐵𝑖 can
be computed in a straightforward manner from 𝑥𝑖. For the infrared
microscopic images, a threshold is calculated based on the histogram
of the absorbance at 1656 cm−1 over the whole image using Otsu’s
binarization approach with the use of a gaussian filter of size 5. For
H&E images, positions not covered by tissue appear bright white and
can be similarly separated by an intensity threshold.

For the interpretation of network output, it is essential that the
activation map ℎ𝑖(𝑗) at each position 𝑗 is bounded within the interval
[0, 1]. To achieve this, a sigmoid activation function is used for each
neuron in the neural network layer representing ℎ. The activations of
the neurons that constitute the activation map ℎ𝑖 are each weighted by
1∕#𝐵1

𝑖 , with #𝐵1
𝑖 representing the number of foreground pixels in the

mask 𝐵𝑖 and then accumulated in a pooling neuron 𝑞; positions masked
as background are associated with zero activation. In this manner,
the pooling neuron accumulates the ratio of tumor activation within

tissue, rather than accumulating the ratio of tumor within pixels. A
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Fig. 2. Schematic overview of the Comparative Segmentation Network (CompSegNet). a The network is trained on sample labels only, but yields a U-Net (Ronneberger et al.,
2015) whose output layer as an activation map facilitates segmentation. b The activation map is inferred with the help of a pooling neuron whose activation is maximized for
cancer samples and minimized for control samples during training.
key modeling ingredient is the transfer function 𝜎𝛼,𝛽 for the pooling
neuron 𝑞. The transfer function is used to steer the network towards
identifying a certain minimum and maximum fraction of tumor in input
images labeled as cancer. At the same time, the transfer function needs
to penalize the overdetection of cancer. Otherwise, without limiting
overdetection, the network will escape towards the trivial solution
and label each cancer sample completely as tumor. We translate these
assumptions into a piecewise linear transfer function

𝜎𝛼,𝛽 (𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑥∕𝛼 if 𝑥 ≤ 𝛼
1 if 𝛼 < 𝑥 ≤ 𝛼 + 𝛽

(1−𝑥)
1−(𝛼+𝛽) if 𝑥 > 𝛼 + 𝛽,

(1)

which puts a maximum incentive for the network to identify a fraction
of tumor that lies in between 𝛼 and 𝛼 + 𝛽 where 𝛼 and 𝛽 are two
parameters with an explicit modeling role. In our present networks, we
used 𝛼 = 0.05 and 𝛽 = 0.9 for the infrared image based CompSegNet
and 𝛼 = 𝛽 = 0.4 for the H&E image based CompSegNet. For training
patches whose tumor ratio exceeds 𝛼+𝛽, this transfer function may lead
to loss contributions that fluctuate between 0 and 1 during training. The
loss function thus relies on the assumption that the number of cancer
patches with close to 100% tumor is limited.

Through the pooling neuron 𝑞, a segmenting network becomes a
binary classifier, whose classification performance is based on the seg-
mentation resulting from the activation layer. Thus, in case of a success-
ful classification by the pooling layer, the corresponding pixel-precise
segmentation can be extracted.

The contribution 𝐿𝑖 of image 𝑥𝑖 to the loss function used is com-
posed of two terms

𝐿𝑖 = 𝐿𝑖
class + 𝜆𝐿𝑖

bgr (2)

coupled by a scaling parameter 𝜆 that was constantly set to 1
throughout all computations presented here. The first part 𝐿𝑖

class is a
binary cross entropy with a class weighting. The class weights 𝑤− and
𝑤+ were determined by the relative prevalence of positive and negative
samples in the dataset. For an input image 𝑥 , we denote its given
4

𝑖

disease label as 𝑦𝑖 and the output of the network after the pooling
neuron as 𝑓 (𝑥𝑖). Then, we write the class-loss as

𝐿𝑖
class = −(𝑤− ⋅ 𝑦𝑖) ⋅ log(𝑓 (𝑥𝑖))

−𝑤+ ⋅ (1 − 𝑦𝑖) ⋅ log(1 − 𝑓 (𝑥𝑖)).
(3)

Activation of pixels that are either masked out as background
through the mask 𝐵𝑖 or belong to a negative cancer-free dataset is
penalized by the term 𝐿𝑖

bgr through

𝐿𝑖
bgr = − 𝑦𝑖

#𝐵0
𝑖
⋅
∑

𝑗∈𝛺 (1 − 𝐵𝑖(𝑗)) log(1 − ℎ𝑖(𝑗))

− 1−𝑦𝑖
|𝛺|

∑

𝑗∈𝛺 log(1 − ℎ𝑖(𝑗)),
(4)

where #𝐵0
𝑖 denotes the number of background pixels in mask 𝐵𝑖. This

background term also penalizes uninformative activation maps with
global low activation. All networks were trained using a dropout rate of
20% in the hidden layers along with batch normalization and RMSprop
as optimizer.

2.4. Activation map binarization

To binarize activation maps for computing Dice scores, we follow an
approach that involves thresholds at two different levels. The primary
threshold 𝜃 constitutes the actual activation threshold to binarize the
activation map. A secondary threshold 𝜚 is a tumor-fraction threshold
such that a sample is classified as cancer whenever the ratio of tumor
pixels exceeds 𝜚 after binarization using 𝜃. Now, each combination
(𝜃, 𝜚) turns the activation layer of a CompSegNet-trained U-Net into a
classifier whose performance can be measured on the validation set by
computing the F1𝜃,𝜚-score. Since both 𝜃 and 𝜚 are [0, 1]-valued, we can
determine (𝜃opt , 𝜚opt ) = argmax𝜃,𝜚 𝐹1𝜃,𝜚 using exhaustive search with a
step size of 0.02 for 𝜃 and a step size of 0.01 for 𝜚.
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Table 1
Patient characteristics for the infrared imaging dataset from the ColoPredict Plus 2.0
multicenter cohort. The total numbers are provided for the number of samples (N(s)),
the number of measurements (N(m)) and the number of patches (N(patch)). The data
provided for the characteristics are the numbers and the percentages corresponding to
N(s). For the cancer-free samples only data about gender and age can be provided.

Training Cohort Validation Cohort Test Cohort

Cancer Cancer-free Cancer Cancer-free Cancer Cancer-free

Total number
N(s) 50 50 25 25 25 25
N(m) 137 106 73 54 59 59
N(patch) 650 645 318 320 240 364

Gender
female 32 (64%) 27 (54%) 15 (60%) 8 (32%) 14 (56%) 13 (52%)
male 18 (36%) 23 (46%) 10 (40%) 17 (68%) 11 (44%) 12 (48%)
Age in years
mean ± SD 77 ± 11.9 68 ± 10.6 76 ± 13.2 72 ± 9.5 73 ± 10.4 71 ± 10.2
UICC Stage
II 30 (60%) n.a. 15 (60%) n.a. 14 (56%) n.a.
III 20 (40%) n.a. 10 (40%) n.a. 11 (44%) n.a.
Localization
left 18 (36%) n.a. 7 (28%) n.a. 11 (44%) n.a.
right 32 (64%) n.a. 18 (72%) n.a. 14 (56%) n.a.

3. Material and methods

3.1. Infrared imaging

Infrared imaging is a staining-free method for obtaining robust
and observer-independent classifications of tissue thin sections on mi-
croscopic spectral images. Based on the molecular fingerprint in the
spectral domain, supervised learning algorithms can be trained to
identify disease-associated regions. It has been shown that this method
allows a differentiation of tissue types with focus on cancer tissue
sections (Kuepper et al., 2018). It also allows the biochemical dif-
ferentiation of tumor tissue in terms of cancer subtyping and grad-
ing (Großerueschkamp et al., 2015; Kuepper et al., 2016). The original
setup was based on Fourier transform infrared spectroscopy (FTIR),
embedded in a microscope setup. Due to long acquisition times a
transition to Quantum Cascade Laser (QCL) based imaging approaches
has been made which reduced the measurement time from 90 h for the
FTIR setup to approximately one hour for an average colon tissue thin
section of 1.4 cm × 2 cm and yields high-quality spectral data (Kuepper
et al., 2018). As a QCL based platform, the Spero QT IR microscope
(Daylight Solution, San Diego, CA, USA) was utilized. The standard
configuration covers the wavelength from 1800 cm−1 to 950 cm−1 with

spectral resolution of 2 cm−1. The installed 4 × 0.3 NA objective was
sed with a coverage of 2 × 2 mm Field of View (FOV). The uncooled
icrobolometer focal plane array (FPA) detector consists of 480 × 480
ixels with a pixel size of 4.25 × 4.25 μm. During the measurement the
ample chamber is constantly flooded with dry air.

.2. Patients and datasets: IR imaging

The primary basis for our infrared microscopy based study is a
ollective of 100 samples of patients with colorectal carcinoma (UICC
tage II & III, older than 18 years) and 100 samples of cancer-free
issue samples, both randomly selected from the multicenter registry
tudy ColoPredict Plus 2.0. The nation-wide study involves 188 clinical
rial centers and collects samples retro- and prospectively. The 100
amples per group (cancer/cancer-free) were divided into 50% training
ata, 25% validation data and 25% independent test data, as shown
n Table 1. The cohorts were balanced by gender, UICC Stage and
ocalization with the whole cohort showing a tendency for a higher
roportion of female patients, Stage II and a right-sided localization.
or some samples, the dataset was extended by measurements on a
econd microscope of same type to include device variance in the
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ataset, so that in total, the study is based on 200 samples and 488
R measurements of 190 patients. For a detailed description of the
ohort refer to Kallenbach-Thieltges et al. (2020). The subdivision into
raining, validation and test group was performed strictly at the patient
evel.

The samples were obtained during surgery, locally formalin-fixed
nd paraffin-embedded and subsequently treated according to the stan-
ard procedure at the Institute of Pathology. Samples were cut into
μm thick tissue thin sections following a previously established

nfrared microscopy workflow (Kuepper et al., 2018). Subsequent to
nfrared imaging, the tissue thin sections were stained by H&E fol-
owing standard procedures in pathology. Based on the H&E stained
issue sections, from each staining-free IR measurement regions were
anually selected that are slightly larger than the input patch size of

he CompSegNet (≈1.1 mm). This was done on the IR overview image
(integral of all wavenumbers) in comparison to the H&E staining by
a pathologist. For the tumor-associated dataset, regions were chosen
that contain a minimum of 20% tumor-related tissue in the 100 cancer
samples. The tumor-free regions were selected from the measurements
of tumor-free samples. Regions were chosen to cover a variety of
different kinds of tumor-free tissue. The final dataset consists of cancer
patches with patch-level label 1 and cancer-free patches with patch-
level label 0 (class label). This class label is used for the class-loss
according to Eq. (3).

For each patch, a binary mask is available representing pixels
covered by tissue as 1 and pixels not covered by tissue (background)
as 0. This binary mask is applied for the loss calculation according to
Eq. (4). Examples for both cancer and cancer-free patches are shown
in Supplementary Figure 1. As a data augmentation strategy, patches
for training were obtained by randomly cropping patches matching the
CompSegNet input size of 256 × 256 pixels. For further augmentation,
the patches are flipped randomly after cropping.

To validate the tumor-activation hypothesis associated with the
trained CompSegNet, the tissue sections from the test dataset were
H&E stained as secondary experiment. In the resulting images, tumor-
associated regions were annotated by a pathologist, yielding a binary
mask with one class representing the tumor-associated tissue regions
and the other class representing all tumor-free regions which includes
tissue components such as crypts, lymphoid follicles, connective tissue,
blood vessels and nerve tissue as well as muscle. The identification of
tumor-associated regions was performed in a broad sense, including
regions which may not contain tumor cells, but do not occur in cancer-
free tissue sections, which is generally referred to as stroma. This
includes, for example, the extracellular matrix, immune cells, infiltrated
connective tissue and basement membranes.

3.3. Dataset: H&E images

For further validation of the CompSegNet approach, the H&E dataset
from Kather et al. (2019a, 2018) was utilized for training and validation
as a well-established dataset in computational pathology. It provides
tissue samples from the National Center for Tumor diseases (NCT,
Heidelberg, Germany) tissue bank and the University Medical Center
Mannheim (UMM, Heidelberg University, Mannheim, Germany). The
larger dataset provides 100,000 non-overlapping image patches from
86 H&E stained slides scanned by a conventional whole-slide scanning
microscope and is referred to as NCT-CRC-HE-100K. Each image patch
is 224 × 224 pixels in size at 0.5 μm per pixel and is assigned one out of
nine different classes, with two classes associated with colorectal cancer
(cancer-associated stroma and colorectal adenocarcinoma epithelium).
The smaller dataset is referred to as CRC-VAL-HE-7K and consists of
7180 image patches, with the same size and resolution as the large

dataset.
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Fig. 3. Training curve, evolution in I-space and ROC curves of a CompSegNet trained on infrared images of colorectal histopathology tissue sections with patch size of 256 × 256
pixels. a Training progress for IR images with overview-images: The blue and orange curve show the training and validation loss over 300 epochs. Five epochs were chosen as
examples to visually illustrate the course of training in the I-space for the validation data. The upper half of the five overview images displays activation within the tumor-free
patches and the lower half within the tumor patches. b–c ROC curves and AUC values for validation (N(patch) = 638) and test dataset (N(patch) = 604) for the selected model
from the 127th epoch on patch-level. d The table summarizes all statistical results on patch-level that were used for selecting the model.
4. Results

4.1. Choice of model-specific parameters

The CompSegNet architecture involves three hyper parameters,
namely a lower bound 𝛼 and an upper bound 𝛼 + 𝛽 representing
minimum and maximum percentage of tumor within a single patch as
well as the scaling parameter 𝜆, introduced in Eq. (2), that weights the
contribution of background loss to overall loss. To address the training
stability against variations of those hyper-parameters, we evaluated
training performance under varying combinations of 𝛼 and 𝛽, as well
as under varying 𝜆.

For the tumor percentage thresholds, we tested all combinations of
𝛼 ∈ {.01, .05, .1} and 𝛼 + 𝛽 ∈ {.9, .95, .99}. With the given knowledge
that cancer samples are selected to contain a minimum percentage of
20% and a maximum percentage or approx. 90%–95% tumor, these
combinations represent a broad variation. Trained on the same cohort
presented in Table 1, we did not observe major differences between
different combinations when determining the maximal accuracy across
300 epochs of training. As shown in Supplementary Table 1, accura-
cies ranged between .9717 and .9921, where the highest accuracy was
obtained for 𝛼 = .01 and 𝛼 + 𝛽 = .9. We further assessed training
stability for each combination by counting the number of epochs where
accuracy exceeds .95. The results shown in Supplementary Table 1 show
that for each combination of 𝛼 and 𝛽, this was the case in 59 epochs on
average, ranging between 23 epochs and 130 epochs. After inspection
of segmentation results the model from epoch 127 with 𝛼 = 0.05 and
𝛼 + 𝛽 = .95 was selected as best model for this analysis. Overall,
our results show that, with a modest degree of relatively weak prior
knowledge, a wide range of combinations of hyper-parameters 𝛼 and 𝛽
lead to a stable model.

For the background scaling parameter 𝜆, we evaluated stability for
𝜆 ∈ {1., .66, .33, .0}. As shown in Supplementary Figure 2, we traced
target loss, background loss and AUROC across 100 epochs of training.
For 𝜆 = 0, training fails to exhibit any sign of convergence, even under
a large range of learning rates. For any of the three non-zero values for
𝜆, models converge stable with nearly equivalent training curves. These
results show that the introduction of the background loss is essential,
while the choice of the scaling parameter exhibits an essentially binary
zero vs. non-zero characteristic.
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4.2. Segmentation model classification performance

For the application of the CompSegNet to infrared data, the number
of input channels was extended to 427 optical channels. The expected
tumor fraction thresholds, as described in Section 2.3 and assessed in
Section 4.1, were set to 𝛼 = .05 and 𝛽 = .9, matching the expected rate
of tumor content within an image patch and thus controls the inductive
bias of the network based on modeling assumptions. The dropout rate
was set to 20% along with a learning rate of 5⋅10−4. The RMSprop
parameters were set to 𝜌 = 10−6 with a momentum of 0. For the learning
rate, a scheduler was implemented with a decay of 0.9 every 30 epochs
along with a batch size of 4.

Fig. 3 a illustrates the loss for the training and validation dataset
over the 300 epochs of training. The first 6 epochs show a slowly
dropping plateau phase. This is a consistent behavior of the CompSeg-
Net and is explicitly guided by a background recognition term in the
loss function. The length of the plateau phase is inversely proportional
to the learning rate. In addition to the loss, a visual illustration has
been added for five epochs over the course of training that shows an
overview of the predictions of the validation patches in the I-space,
where the evolution of the inferred I-space can be traced over training
time. The evolution of the learned I-space can also be traced visually
in the Supplementary Video. The final epoch (epoch 127) has been
selected with regard to the area under receiver operating characteristic
(AUC) values for the receiver operating characteristic (ROC), the F1
score, sensitivity, specificity and accuracy on the validation dataset. All
statistical values are based on the patch-level classification. Validation
on the independent test set exhibits similar performance as on the
validation set as illustrated in Fig. 3, indicating a stable generalization
performance.

4.3. Validating the tumor-activation hypothesis

In order to validate the tumor-activation hypothesis, we applied
the trained CompSegNet to a set of three whole-slide images from the
independent test set. The prediction for the whole-slides was performed
by moving a 256 × 256 pixel window over each measurement with
an overlap of 64 pixels while assigning maximum activation value in
the overlapping areas. The resulting whole-slide activation map was
binarized by a global activation threshold of 𝜃 = .628 as described
in Section 2.4. Using this activation threshold, the classification of the
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Fig. 4. Results for whole-slide segmentation on infrared measured samples from the test cohort of the ColoPredict Plus 2.0 study. a–c Ground truth annotation of H&E images
with regard to tumor-free regions and tumor-related regions. Masked out background not covered by tissue is shown in black. d–f show the annotation from a–c overlaid with the
segmentation output of the CompSegNet in green. f(i) and f(ii) show a magnification of f for two selected regions in which tumor-associated tissue was annotated, but no activation
of the network appeared. Infrared spectra are plotted for cancer segmentation areas and highlighted non-activated areas. For interpretation of annotation and segmentation, g–h
show the matching H&E stained sections for d–f. j–m illustrates two whole-slide H&E stained images, overlaid with the activation map of the infrared image (j: cancer-sample, k:
cancer-free sample) and the corresponding H&E image without segmentation overlay (l: cancer-sample, m: cancer-free sample).
whole-slide images in the test set yields an ROC AUC value of 0.999.
With a tumor-fraction threshold of 𝜚 = 5%, the sensitivity, specificity
and accuracy are 100%, 98.2%, and 99.1%, respectively.

Agreement between the resulting binarized mask and tumor annota-
tions was measured using Dice scores after transferring the H&E image
and its annotation into the same coordinate system as the infrared
image using the registration approach from Trukhan et al. (2020). Fig. 4
a–i illustrate the results on the whole sample for three thin tissue RoI
from the test cohort. The Dice scores for all 25 whole slide images in
7

the test cohort is .63 ± .18 indicating a good agreement between tumor-
associated regions and the inferred I-space. The I-space is consistently a
subset of the annotated regions. This may at least partially be explained
by the inherent practical limitations of annotating the tumor-associated
regions, which is complicated by the reduced H&E image quality that is
inherent to the PET microscopy slides used for infrared microscopy. For
the purpose of linking back the I-space to the sample, two subregions
from Fig. 4f were selected that show examples of both agreement and
disagreement between I-space activation and annotation. By looking at
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Fig. 5. Training curve, evolution in I-space and ROC curve of a CompSegNet trained on H&E stained images of colorectral histopathology image data. a Loss during training are
shown in blue and orange for training set and validation set, respectively. Four epochs were chosen as examples to visually illustrate the course of training in the I-space for the
validation data. The upper half of the four overview images displays activation within the tumor-free patches and the lower half within the tumor patches. b Comparison of ROC
curves for the H&E CompSegNet and a ResNet18. The ROC curve was obtained based on the validation set from Kather et al. (2019a), using all 1200 tumor patches against 1200
patches randomly sampled from the remaining 8 classes as a class-balanced validation set. A visual snapshot displaying the activation maps of a random subset of the validation
dataset is provided for four epochs. The ROC curve of the CompSegNet consistently exceeds the ROC curve of predictions through a ResNet-18.
the spectral property of the underlying tissue as shown in Fig. 4f (iii), a
molecular interpretation becomes possible that closes the gap between
I-space, hypothesis and the biochemical properties of the sample itself.
For a high-level overview, two whole-slide H&E images are illustrated
with the I-space activation in green in Fig. 4j and k, showing one cancer
and one cancer-free sample, respectively.

4.4. Tumor segmentation in conventional histopathology image data

In order to further validate the CompSegNet approach, we trained
a network to segment colorectal carcinoma related structures using the
H&E dataset from Kather et al. (2019b), as described in Section 3.3.
As training data, the dataset provides 100,000 image patches from
86 H&E stained slides. Each image patch is 224 × 224 pixels in size
and is assigned one out of nine different classes. In order to match
the characteristics of the training data, we chose the expected tumor
fraction parameters of the loss function as 𝛼 = 𝛽 = .4, corresponding
to an expected tumor content of 40%–80% in each patch labeled as
tumor. The training dataset is complemented by a validation dataset
with about 7000 images with the same parameters. For independent
testing, we further supplemented the dataset with large subregions of
ten further whole-slide images from the ColoPredict Plus 2.0 registry
study summarized in Table 1. Three examples are illustrated in Fig. 6,
results for all ten images are provided in Supplementary Figure 3.
In the test samples, tumor and associated regions were annotated
as ground truth. All H&E stained images were normalized using the
approach by Macenko et al. (2009). Note that in the setting of applying
the CompSegNet to H&E stained images, the H&E images themselves
cannot be used as secondary experiment for validating the tumor acti-
vation hypothesis. Yet, in order to measure the agreement of inferred
activation with tumor-associated tissue, we annotated tumor regions
and measured the overlap with activation. Compared to the infrared-
based activation maps, the H&E based activation maps illustrated in
Fig. 6 display over-detection in two out of three samples of tumor-
related structure. In the third sample (Fig. 6c), one part of the tumor
is not recognized, potentially due to tumor structures not represented
in the training dataset.

We compared the I-space based classification of the CompSegNet
with LRP as a reference for post-hoc explanation methods (Hägele
et al., 2020). Conceptually, LRP exhibits a tendency towards satisfying
the tumor-activation hypothesis because the relevance map is built on
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the invariant that accumulated relevance equals network output (Bach
et al., 2015). However, as a post-hoc approach, LRP lacks correspond-
ing inductive bias during training. As detailed in Supplement A, we
followed Kather et al. (2019b) and trained a ResNet-18 (He et al., 2016)
on the same data as the CompSegNet, and subsequently performed LRP
on the image patches from the validation set. The ResNet output was
used to compute ROC curves on the validation set, which due to the
relevance invariant is equivalent to a ROC curve over accumulated
pixel relevance. The ResNet-18 exhibits slightly but consistently worse
performance than the CompSegNet, indicating an effect of the inductive
bias on optimizing I-space during training of the CompSegNet. The
same trend is observed on the independent test set, where the LRP
based segmentation achieves an average Dice score of .55, compared to
an average of .66 obtained by the CompSegNet (Supplementary Figure
3).

As to be expected from the use of sigmoidal as well as piecewise
linear transfer functions, convergence of the CompSegNet (Fig. 5a)
is less smooth compared to the ResNet-18. With the rapid forward-
calculations of the U-Net underlying the CompSegNet, the evolution
of the learned I-space can be traced visually during training without
much computational effort (Supplementary Video). For the backward
propagation underlying LRP, this is impractical due to the much higher
demand in computational resources (Supplement A).

5. Discussion

Several aspects need to be pointed out regarding our definition
of a machine learning model explanation. First, it is crucial that the
hypothesis refers back to the original ex-silico sample rather than the
already observed in-silico data 𝑥. By referring back to the sample,
the hypothesis can (and in general will) facilitate a prediction about
the outcome of a secondary type of experiment performed on the
same sample, rather than a prediction about the experiment that has
been conducted to obtain 𝑥. Second, the definition introduces a new
layer of validating a machine learning model. In addition to validat-
ing at the level of training labels, the explanation of the machine
learning model can be validated by testing the stated hypothesis. In
particular, the model may be invalidated by falsifying the hypothe-
sis. Third, the definition unifies inductive machine learning with the
hypotheto-deductivism of the scientific method, since the inductive
task of supervised training is complemented by deductive reasoning:
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Fig. 6. Segmentations of H&E stained images from the fully independent ColoPredict Plus 2.0 study test set. a–c Ground truth annotation of tumor and associated structures.
Following Fig. 4, annotated tumor-associated regions are shown in purple, other tissue in blue. d–f Ground truth overlaid with binarized segmentation map (green). g–i H&E
staining images underlying the annotation and the activation map.
Pure supervised training merely interpolates between data points, and
the inductive bias of a machine learning method determines how to
interpolate. Our approach introduces I-space, which is also subject to
interpolation, but the arbitrariness of interpolation is blocked by a
falsifiable hypothesis and predictions derived from it. In this sense,
phrasing inductive bias through I-space can be thought of and used as a
modeling tool that controls how the model interpolates. The deductive
ex-silico validation level legitimates to train a model that optimizes
towards certain features of I-space representations. In other words, I-
space can be used to constrain and control the inductive bias of training
𝑓 .

Our definition links to existing concepts and approaches of explain-
able machine learning. In the taxonomy introduced in Guidotti et al.
(2018), interpretations matching our definition are outcome explana-
tions since they explain the decision on a given object in contrast
to model explanations which explain the internal logic of a machine
learning model independent of a specific input. In general, any of the
numerous and widely used model explanation approaches proposed
in literature such as linear relevance propagation (Bach et al., 2015),
saliency maps (Simonyan et al., 2013) or class activation maps (Zhou
et al., 2016; Selvaraju et al., 2017) are potential sources of an I-
space. These methods usually infer the computation of an input-specific
interpretation in a post-hoc manner after a black box neural network
has been trained. While such inferred interpretations may support a
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hypothesis that withstands experimental validation, post-hoc methods
of output explanation do not exploit the potential to optimize I-space
inference towards a specific hypothesis by modeling inductive bias
during training. It is important to notice that our CompSegNet approach
yields a readily trained U-Net, which can process input using fast
parallel forward calculations. This provides a practical and crucial
advantage over most post-hoc methods, which require backpropagation
steps that are more difficult to parallelize.

Some existing machine learning models implicitly match parts of
our definition of falsifiable explanations. For example, applying mul-
tiple instance learning in histopathology (Campanella et al., 2019;
Lu et al., 2021; Ilse et al., 2018; Li et al., 2019) tiles whole-slide
samples into a large number of patches, and the key task is to identify
the few disease-relevant patches among this large number. The few
positive instances claim to localize disease, which yields a basis for
a falsifiable hypothesis. In other words, multiple instance learning in
histopathology yields an I-space at the level of patches. In this view
of multiple instance learning, our CompSegNet approach is a weakly
supervised learning approach that provides an I-space in the same
coordinate system as the input image. Both the CompSegNet approach
and the variants of multiple instance learning used in computational
pathology (Campanella et al., 2019) involve different types of target
functions that are tailored towards localizing disease under certain
side assumptions. This optimization under side assumptions indeed



Medical Image Analysis 82 (2022) 102594D. Schuhmacher et al.
introduces the desired inductive bias while training the models. In more
general terms, certain types of weakly supervised learning may provide
a basis for falsifiable explanations.

A side-effect of directing inductive bias through modeling assump-
tions in the loss function is the introduction of hyperparameters. In
case of the CompSegNet, the hyperparameters 𝛼 and 𝛽 possess a direct
interpretation of a lower and upper bound of tumor fraction within
a single patch and can thus be chosen by domain understanding and
knowledge about the training data. Hyperparameters also occur in
related weakly supervised learning methods, for example in the promi-
nent and recently proposed CLAM system (Lu et al., 2021), where three
hyperparameters balance certain contributions to the loss function.
Similar to our results, the authors of CLAM observe robustness against
changes in these hyperparameters. While introducing inductive bias
through hyperparameters is inherently in danger of negatively affecting
classification or generalization performance, our results as well as
the results from CLAM indicate that this is not necessarily the case.
As a general perspective, introducing explicit, and ideally hypothesis
guided, inductive bias may be particularly useful when the amount of
training data is inherently limited. This may be particularly fruitful in
the context of clinical studies, where patient numbers are inevitably
limited.

It is noteworthy that experimental validation is an inherent part
of falsifiable explanations. It facilitates formal inclusion throughout
all phases of clinical studies. This appears relevant since on the one
hand, explainable models are often considered an important corner
stone for trustworthy machine learning in medical applications (Abels
et al., 2019; Kelly et al., 2019), while on the other hand no formal
definition of what an explanation is has been established to date.
The question arises whether explanations that are not connected to
falsifiable hypotheses can or should formally be part of clinical studies.
The necessity of interpretation has recently been argued by Durán and
Jongsma (2021), who identify epistemic opaqueness as the primary rea-
son to distrust black box models. Since falsifiable explanations connect
domain knowledge with machine learning models within the rigor of
the scientific method, our proposed framework does establish epistemic
transparency of the underlying machine learning model.

Neither the input space nor the I-space is limited in any way to
image data, and the concept of falsifiable explanations carries beyond
biomedical settings. While the input space is constituted by a given
experimental setup, the only constraint on I-space is that it needs to
connect to the hypothesis that constitutes the actual interpretation. It
is important to realize that the hypothesis may and in general should
involve further domain knowledge about the underlying sample. For
example, the tumor-activation hypothesis involves knowledge about
tumorgenesis. The same holds for the task of designing a secondary
experiment. Examining the hypothesis as in our case by performing
H&E staining on the sample involves background knowledge that tumor
can be recognized by densely packed nuclei of certain morphology in
particular regions of the sample. Other experiments may be imaginable
for the same hypothesis, e.g. dissecting the areas with high activation
using laser capture microdissection (Großerueschkamp et al., 2017;
Selbach et al., 2021) and subsequently performing genome sequenc-
ing on the dissected sample material. A possible prediction derivable
from the hypothesis would be to observe an accumulation of somatic
mutations in the dissected areas compared to areas with no activation
in I-space. In order to obtain robust molecular characterizations from
laser microdissection, a highly precise localization of disease patterns is
required. Inferring semantic segmentation at full input resolution based
on coarse tile-level labels is indeed the major motivation behind our
CompSegNet approach. In this sense, the approach differs from multiple
instance learning approaches which infer tile-labels from whole-slide
image labels.

Prospectively, a hypothesis-centric approach based on our frame-
work could associate an inferred I-space with hypotheses regarding
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molecular mechanisms behind specific tumor-subtypes. Such hypoth-
esis could for instance claim the localization of either microsatel-
lite instable or mismatch repair deficient regions within tissue sam-
ples (Li et al., 2020), which could be assessed deductively by combining
laser microdissection with genomics or transcriptomics as a secondary
experiment.

6. Conclusions

In summary, we have introduced a framework for falsifiable ex-
planations of machine learning models which establishes a hypothesis
rather than an expert as the major constituent of an explanation. We
introduce the concept of I-space as the link between hypothesis and
machine learning model. As we demonstrate, a suitable I-space can
be obtained by either an explicit inductive bias during training or by
post-hoc methods. We showcase these concepts by establishing a tumor-
activation hypothesis for deep neural networks that identify cancer in
histopathological imaging data.

Our comparison between the weakly supervised CompSegNet ap-
proach and LRP as a post-hoc approach demonstrates that in general
both post-hoc and inductive bias based approaches are feasible ap-
proaches to infer a relevant I-space. Although our validations are
limited to two types of histopathologic imaging data, the CompSegNet
approach naturally translates to a variety of other image modalities,
in particular if controlling the inductive bias through the design of
dedicated loss functions is considered as a modeling step. Conceptually,
the CompSegNet approach aims to overcome post-hoc machine learning
models and takes a step towards models that are more, although
certainly far from fully, intrinsically interpretable. Combined with the
concept of falsifiable explanations, the method provides a framework
for characterizing underlying or unidentified molecular changes or
patterns.
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