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We report the first experimental demonstration of 
frequency-locking of an extended-cavity quantum-
cascade-laser (EC-QCL) to a near-infrared frequency 
comb. The locking scheme is applied to carry out 
absolute spectroscopy of N2O lines near 7.87 μm with an 
accuracy of ~60 kHz. Thanks to a single mode operation 
over more than  100 cm-1, the comb-locked EC-QCL 
shows great potential for the accurate retrieval of line 
center frequencies in a spectral region that is currently 
outside the reach of broadly tunable cw sources, either 
based on difference frequency generation or optical 
parametric oscillation. The approach described here 
can be straightforwardly extended up to 12 μm, which is 
the current wavelength limit for commercial cw EC-
QCLs. © 2017 Optical Society of America 

OCIS codes (120.3930) Metrological instrumentation; (140.3425) Laser 
stabilization; (300.6340) Spectroscopy, infrared 

http://dx.doi.org/10.1364/OL.99.099999 

Since their invention, optical frequency combs have revitalized the field of precision molecular spectroscopy, making it possible to achieve accuracies at the kHz or even sub-kHz level on absorption line centers [1-4]. In order to bring such a comb revolution to the point of redefining spectroscopic databases such as HITRAN [5], which are still mostly based on a pre-comb spectroscopy era, it is crucial to develop spectrometers that join an accurate frequency axis to a wide spectral coverage of > 100 cm-1, which is the typical extension of absorption bands. This is easier to be performed in the near-infrared, thanks to the availability of commercial frequency combs and of a variety of widely tunable diode-laser-based solutions. In this respect, demonstrations of accurate broad line surveys have been given for acetylene, ammonia and water in a sub-Doppler regime [6-10] and more recently for carbon monoxide in a Doppler broadening regime [11].  In the mid-infrared (mid-IR) region, the development of such spectrometer is more challenging. A first requirement is the comb-referencing of the mid-IR probe laser: this has been obtained by a variety of approaches, such as down-conversion of the frequency comb to the mid-IR through difference 

frequency generation (DFG) [12,13] or optical parametric oscillation (OPO) [14], up-conversion of the probe laser to the near-IR through sum-frequency or second-harmonic generation (SFG/SHG) [15-18], as well as referencing schemes applied to DFG- and OPO- based cw sources [19,4]. A second requirement is a widely tunable laser source. Up to a wavelength of 4.5 μm, a viable solution is represented by cw sources based on DFG or OPO processes in periodically-poled lithium-niobate crystals: these have been exploited for sub-Doppler surveys over more than 50 cm-1 on CH4 lines near 3 μm and N2O lines near 4.5 μm [20]. Distributed-feedback QCLs are a valuable alternative, but only over a narrower spectral range, as demonstrated by Galli et al. [21] on CO2 lines near 4.3 μm. The widest spectral coverage achieved so far was obtained by a dual-comb approach [22] that affords multi-parallel detection and extremely fast acquisition times: however, this comes at the price of an accuracy limited to ~300 kHz and of a setup composed of a pair of Hz-level-locked combs that can hardly be scaled for operation beyond 4.5 μm. An extremely powerful alternative is represented by EC-QCLs: these enable single mode emission and frequency tuning in the mid-IR (from 4 to 12 μm) over ranges in excess of 100 cm-1, with a 100 mW optical power. Their adoption for precision spectroscopy has been hampered so far by a large amount of frequency noise, resulting in an optical linewidth of ~ 15 MHz over 50 ms [23]. This is one of the reasons why neither their frequency nor their phase has been so far locked to a frequency comb. Their use in combination with frequency combs has been demonstrated by the group of N. Newbury in an open loop regime [24], which exploited the inherently fast and wide mode-hop-free tunability of these lasers, yet this approach could not reach an accuracy better than 800 kHz.  In this Letter, we report for the first time frequency locking of an EC-QCL to a near-IR frequency comb, the former at around 7.87 μm, the latter at 1.9 μm from a Tm:fiber oscillator. The locking is obtained by slow feedback to the EC-QCL piezo with a 100 Hz servo bandwidth, which results in a 100 kHz frequency stability over 100 ms. In these conditions, N2O absorption spectra can be acquired and fitted with an overall uncertainty of about 60 kHz on the line center frequency. The addition of a fast feedback loop acting on an external acousto-optic frequency shifter is also discussed:  this   allows a narrowing of the laser emission line by a factor of 8, but it 
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 Fig. 2. Color code: green (free running), blue (slow locking), red (fast locking). (a) Beat-note signal spectrum acquired with a sweep time of 6 ms at a 50 kHz resolution bandwidth, showing a nearly 20 MHz large laser jittering window at a ms time scale. (b) Averaged electrical spectrum of the beat-note signal under slow and fast locking, as compared to the diffraction efficiency response of the AOFS (grey dashed dotted line). (c) Power spectral density of the error signal. (d) Scope traces of the laser intensity in locking conditionIt can be applied for spectral scans up to 0.9 cm-1, which is the limit given by the piezo. However, this approach can be easily extended to tens of wavenumbers with a remote control system that takes charge of driving both piezo and rotation stage of the laser.  To achieve a denser sampling of narrow spectral features, we tested both an interleaving of spectra acquired with different comb repetition rates and, as a second frequency scanning strategy, the tuning of the rep-rate while keeping a steady lock between EC-QCL and comb. Figure 3(a) reports an example of absolute absorption spectrum near 1269 cm-1 of an 85%-diluted N2O sample housed in a 66 cm long optical cell at a pressure of 0.25 mbar. The spectrum extends over 0.6 cm-1 and presents 12.5 MHz-spaced points due to the interleaving of eight scans acquired at slightly detuned repetition frequencies (by ~30 Hz). The inset provides a zoomed-in view of the P(25) doublet and better highlights repeatability and absolute positioning of spectral points.  A quantitative analysis has been performed for the spectra reported in Fig. 3(b) and 3(c). The first refers to a 0.07%-diluted sample at 130 mbar. In this case, the 100 MHz sampling is sufficiently dense to reproduce the absorption spectrum and enables reliable fitting with a Voigt profile. On a statistical ensemble of 100 spectra, the fitting provides an rms deviation of 500 kHz for the line-center frequency, which is equivalent to 7 parts over 104 with respect to a 750 MHz linewidth. The uncertainty primarily reflects the signal-to-noise-ratio (SNR) of the measurement, which amounts to ~1000 for the single spectrum. The residuals from the fitting do not show, at such a level of SNR, any appreciable departure from the Voigt profile. A more stringent test on precision (see Fig. 3 (c)) was obtained on the intense P(18) line of the 1000-0000 band at a pressure of 0.013 mbar, i.e., in conditions where the collisional broadening is negligible and the absorption linewidth is Doppler dominated to an estimated value of 70.5 MHz value. A 1.5 MHz spectral sampling is here ensured by a 4 Hz stepping of the comb rep-rate. This occurs at every 100 ms so that a 500 MHz large spectrum is acquired in 36 s. The statistical 

uncertainty on the line-center frequency, found by comparing consecutive back-and-forth spectral scans, is 70 kHz which is mainly limited in this case by the laser emission linewidth. In terms of systematic uncertainty, the limiting factor is related to an asymmetrical jittering of the laser around the local oscillator frequency, which translates in a beat note barycenter slightly detuned from the local oscillator itself (see Fig. 2(b)). Such detuning is accounted for by registering the electrical spectrum of the beat note signal during the spectral scan, but a residual systematic uncertainty at the 60 kHz level cannot be eliminated. This is prudent estimation that derives from the comparison of multiple spectra of the same line acquired in different conditions, changing the sign of the lock and also the local oscillator frequency. The  resulting line center-frequency is 38052237297(62) kHz, the statistical uncertainty being almost negligible as compared to the systematic uncertainty due to sufficient averaging. The HITRAN value for the center-frequency is only 2.7 MHz above our determination and results more accurate than the nominal 3-30MHz confidence range. The Doppler width retrieved from the fitting is equal to 73.9 MHz, thus 2.4 MHz higher than the expected value, but this precisely reflects the instrumental broadening given by our 21 MHz large laser, once the typical quadrature addition law for Gaussian widths is applied.  In conclusion, we have reported on the architecture and performance of a novel comb-referred broadly-tunable laser source that provides 60 kHz accuracy levels in a spectral region where combs have failed so far to provide an impact on the spectroscopic knowledge encompassed in databases such as HITRAN. An effort is ongoing on the development of a fully-automated remote control system that is capable of fully exploiting the 1220-1325 cm-1 tuning range of the EC-QCL. This will be applied to carry out accurate survey of P and R branches lines of the fundamental 1000-0000 band of N2O. Other gas samples may interestingly be targeted in the currently available spectral region, such as H2O2 and CH4, or in other regions till 12 
μm by replacement of the laser-head. 



  Fig. 3. (a): Absorption spectrum of an 85% nitrogen-diluted N2O sample at a pressure of 0.25 mbar near 1269 cm-1, with a comb-defined frequency axis. Inset: zoomed-in view of the doublet, with interleaved spectra for a denser spectral sampling. (b) Absorption spectrum of the P(18) line of N2O with a 0.07% dilution at 131 mbar with a 100-MHz frequency grid. (c) Absorption spectrum of the same line in a pure sample at 0.013 mbar, here acquired by a 4 Hz stepping of the comb repetition frequency (1.5 MHz spaced optical frequency grid).
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