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High definition infrared chemical imaging of
colorectal tissue using a Spero QCL microscope

B. Bird* and J. Rowlette

Mid-infrared microscopy has become a key technique in the field of biomedical science and spec-

troscopy. This label-free, non-destructive technique permits the visualisation of a wide range of intrinsic

biochemical markers in tissues, cells and biofluids by detection of the vibrational modes of the constituent

molecules. Together, infrared microscopy and chemometrics is a widely accepted method that can dis-

tinguish healthy and diseased states with high accuracy. However, despite the exponential growth of the

field and its research world-wide, several barriers currently exist for its full translation into the clinical

sphere, namely sample throughput and data management. The advent and incorporation of quantum

cascade lasers (QCLs) into infrared microscopes could help propel the field over these remaining hurdles.

Such systems offer several advantages over their FT-IR counterparts, a simpler instrument architecture,

improved photon flux, use of room temperature camera systems, and the flexibility of a tunable illumina-

tion source. In this current study we explore the use of a QCL infrared microscope to produce high

definition, high throughput chemical images useful for the screening of biopsied colorectal tissue.

Introduction

The latest generation of Fourier transform infrared (FT-IR)
spectrometers, that incorporate large liquid nitrogen cooled
focal plane array (FPA) detectors within an infrared microscope
system, have no doubt accelerated the development of the field
of spectral histopathology. Significant improvements in data
acquisition, processing, and classification times, in part due to
the increased field of view (FOV) of these FPA based devices,
have enabled spectroscopic investigations that now include
clinically relevant patient populations.1–4 Nevertheless, despite
these marked improvements when compared to linear detector
array (LDA) or point detector based systems, data collection
times from tissue micro-array (TMA) cores or whole tissue sec-
tions are still in the order of hours or days.6 All FT-IR based
microscope systems are inevitably limited by a tradeoff
between spatial resolution, signal-to-noise ratio, field of view
and acquisition time. Traditionally with a conventional bench-
top FT-IR based system, to achieve true diffraction-limited
resolution, high magnification objectives with the largest
possible numerical aperture (N.A.), or use of upstream optics
to increase the overall system magnification are required that
provide a much-reduced field of view (ca. 150 × 150 µm) and
extended sample dwell times to achieve an acceptable signal-
to-noise ratio for tissue classification purposes.7–9 More

recently, however, the application of high resolution imaging
for clinical diagnostics has shown clear advantages for the
identification of small tissue structures that are essential for
detecting early forms of disease.9–11 Identification of very
small changes in the biochemical components of glandular,
endothelial and myoepithelial cells, or intra-lobular stroma
could be key for early pre-malignant changes to be identified
and tracked.

The recent development of the Spero® microscope
(Daylight Solutions Inc., San Diego, USA), a laser-based mid-
infrared microscope, provides the capability to perform diffrac-
tion-limited imaging across the molecular fingerprint region
(900–1800 cm−1), at high N.A. (0.7) and with a much enhanced
FOV (650 × 650 µm). This equates to a ∼20× enhancement in
the FOV, making high resolution imaging of tissue samples
more viable in practical timeframes.6,12 Currently the two
major bottlenecks predominant in IR chemical imaging are
long data collection times and spectral hypercube file size. The
Spero QCL infrared microscope can address both issues by
harnessing the power and flexibility of the tunable laser
source. If diagnostic spectral features are located at a reduced
number of frequencies across the full spectrum, which is often
the case, the laser can be programmed to target these frequen-
cies alone, reducing acquisition time and data file size
proportionately.13,14

This contribution presents data acquired from biopsied
colorectal tissue specimens as an example case study of this
new capability. In addition to the acquisition of full band
infrared spectra, sparse frequency datasets were recorded from
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10 infrared bands previously identified as salient for tissue
segmentation in the literature. This was conducted to create
rapid chemical maps. Such images do not provide diagnostic
contrast (i.e. the segmentation of cancerous cells), but could
serve as methods for more rapid global screening of samples.
As in traditional histology, identification of abnormal tissue
architecture could potentially be visualized using these more
rudimentary chemical images, prior to moving on to more
rigorous analyses, including full-band infrared analysis, or by
using new laser microdissection techniques for downstream
proteomic and genomic testing of targeted regions.

Materials and methods
Sample preparation

Colorectal tissue sections were cut from archival tissue banks
of formalin fixed paraffin embedded (FFPE) tissue blocks
(SDPathology, San Diego, USA). Two parallel sections were cut
from each sample for analysis. The first section was cut at
10 µm thickness and floated onto a CaF2 disc (25 mm × 2 mm)
for infrared microscopy. The second and adjacent section was
cut at 5 µm thickness and floated onto a regular glass slide
for brightfield visible microscopy. Both sections were sub-
sequently de-paraffinised using standard protocols. The
section mounted onto glass was further H&E stained and cover
slipped before conventional brightfield imaging at 20× magni-
fication using a whole slide imaging system (Hamamatsu,
Japan). The section mounted onto CaF2 disc remained stain-
free and stored in a desiccator prior to infrared microscopy.

QCL-based infrared microscopy

QCL-based infrared microscopy6,12–16 was performed using a
Spero microscope (Daylight Solutions Inc., San Diego, USA).
Mosaic images were recorded from the tissue samples using
the 12.5×, 0.7 N.A., compound refractive infrared objective of
the microscope. This optic has a field of view 650 μm × 650 μm
(480 × 480 pixels), and sample referenced pixel size of 1.35 μm.

Mercury cadmium telluride (MCT) focal plane arrays (FPAs)
have been the choice for FT-IR based infrared imaging and
have been employed in some QCL microscope prototypes.16

These cameras can operate over 2–12 µm when cryogenically
cooled with frame rates exceeding 1 kHz but suffer from poor
linear dynamic range (ca. 100 : 1) and long-term reliability.

Room temperature operated microbolometer cameras
based on VO2 or a-Si have intrinsic responsivity over the entire
mid-IR band and can exhibit excellent linear dynamic ranges
(>1000 : 1). However, commercially available microbolometers
are spectrally limited to 8–14 µm in order to suppress water
vapor noise in thermal imaging applications. The Spero micro-
scope uses a custom uncooled 480 × 480 microbolometer VO2

FPA having a 30 Hz frame rate and excellent responsivity over
the 5–14 µm molecular fingerprint band.

Currently, a full data cube containing 226 spectral images
takes 5 minutes or about 9000 individual camera frames.
Future improvements in instrumentation could allow spectral

data collections rates to increase to about one spectral image
per 1–2 camera frames collected.

As all molecules respond to the exciting infrared radiation
and produce relatively complicated infrared spectra, the
response observed for a single cell or an area of tissue is a
complex superposition of all spectral features of all bio-
molecules in the sample. Although infrared spectroscopy is
usually referred to as a “fingerprint” spectroscopic technique,
which implies that every molecule known exhibits a distinct
spectrum that identifies it, the superposition of such finger-
prints leads to relatively broad spectral features that need to be
decoded, or de-convolved, to enable an interpretation or diag-
nosis. Nevertheless, it is typical that small but reproducible
changes in the spectral features can be identified between cell/
tissue types. These changes can be identified by use of un-
supervised methods of multivariate image analysis or mined
and ranked using annotated spectral libraries and feature
selection algorithms based on statistical measures such as the
t-test. In general, a smaller number of salient spectral features
can be used to train robust supervised algorithms that provide
optimal classification.1,4

In this study, all infrared images were recorded in duplicate
from the full fingerprint region between 900–1800 cm−1, and
from a reduced set of 10 sparsely distributed salient frequen-
cies within the same region, located at 940, 1044, 1180, 1300,
1336, 1360, 1480, 1544, 1656 and 1800 cm−1 respectively.
These frequencies were selected after consultation of several
rigorous FT-IR based studies performed by 3 independent
research groups17–20 and are further summarized in Table 1.
Each recorded spectral hypercube took 5 minutes for a full
broadband spectrum and 0.9 minutes for a sparse frequency
data collection. The data was recorded at 8 cm−1 spectral
resolution with a 4 cm−1 data interval, and ratio’d against a
background from a clean area of the substrate. Spectral hyper-
cubes 480 × 480 × 256 (102 MB) or 480 × 480 × 10 (5 MB) were
thus created.

Data pre-processing

Standard pre-processing techniques for mid-infrared spec-
troscopy were used. These have been reported at great length
previously.5,21,22 Raw data sets were imported into the multi-
sensor imaging software package ImageLab.23 The data proces-
sing included:

• Noise reduction via the maximum noise fraction
transform.24

• Spectral quality test to remove pixel spectra from regions
not occupied by tissue (pixels describing an amide I intensity
at 1656 cm−1 <0.05 au were rejected).

• Full band spectra were converted to second derivatives
(Savitzy–Golay algorithm, 9-point smooth) to provide better
resolved peaks and eliminate background slopes.

• All spectral vectors were scaled to a zero mean and a stan-
dard deviation of 1.0 (standard normal variate normalisation)
to reduce the influence of intensity changes caused by differ-
ences in cellular density and tissue thickness.
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Data analysis

Sparse frequency absorbance datasets were used to create
chemical images as follows:

• Protein map: peak height ratio of the amide I
(1656 cm−1)/amide II (1544 cm−1) bands. The ratio was linear
baseline corrected using intensity values recorded at 1480 and
1800 cm−1. The ratio image produced was mapped against a
white–blue (min–max) colour palette.

• Collagen map: peak height of collagen CH2 side chain
vibrations (1336 cm−1). The measurement was linear baseline
corrected using intensity values recorded at 1300 and
1360 cm−1. The intensity image produced was mapped against
a white–red (min–max) colour palette.

• Mucin map: peak height of the strongest mucin glycosyla-
tion band (1044 cm−1). The measurement was linear baseline
corrected using intensity values recorded at 1180 and
940 cm−1. The intensity image produced was mapped against
a white–green (min–max) colour palette.

• RGB image: each chemical map mentioned above was
merged into a single red, green, blue colour image.

These chemical maps or stains were generated in an effort
to describe the potential of sparse frequency collection proto-
cols to provide meaningful and easily interpretable chemical
images for rapid inspection/screening of samples.

Full band (900–1800 cm−1) second derivative datasets were
analysed using the unsupervised algorithm, k-means cluster-
ing, a non-hierarchical iterative method that obtains “hard”
class membership for each spectrum. A total of 6 clusters was
chosen for analyses. False colour images were constructed,
where a pixel’s cluster membership is defined by a corres-
ponding colour in the image. Pixels rejected by the quality test
are provided a black colour. These datasets were collected to
provide further evidence that QCL-based infrared spectral
imaging data can produce high fidelity images and spectra
sufficient for rigorous multivariate analyses and allay concerns
from early reports of potentially problematic coherence effects.25

Results and discussion

Due to the longer wavelengths of mid-infrared light in the bio-
logical fingerprint region (λ = 5.5–11 µm) the lateral resolution
of IR based microscopes is reduced compared to visible light
microscopes by an order of magnitude. However, this inherent
drawback is offset by the rich chemical information that can
be visualised by this non-destructive, label free technique. The
performance of the Spero microscope’s 12.5× optic is demon-
strated in Fig. 1(a)–(d), whereby the contrast of a USAF 1951
resolution test pattern was used to quantify spatial resolution
in reflection geometry. Fig. 1(a) displays a reflectance image of
groups 6 and 7 of the target recorded at 1555 cm−1 (6.4 µm).
Fig. 1(b) displays a line profile plot across group 6 elements
that has patterns of spatial frequencies down to 4.38 µm
(widths of each group of elements are displayed in red). Spatial
resolution is governed by the diffraction limit. A microscope
can be considered diffraction limited if able to distinguish
objects separated by 0.61λ/N.A. The line plot clearly indicates
that features of 5 microns can be resolved, meeting the
Rayleigh criterion of 26% image contrast. Fig. 1(c) shows an
image captured by the microscope from a microtome tissue
section. The greyscale IR chemical image was acquired from a
healthy colorectal tissue section (3 × 3 image tile mosaic)
using the amide 1 (1656 cm−1) vibration of proteins. Fig. 1(d)
displays a brightfield image captured from the parallel H&E
stained section. By direct comparison of the images it is clear
the small diagnostic features of the colorectal tissue can be
adequately resolved with this optic, including microstructures
such as blood vessel walls and the colonocytes that surround
the goblet cells of the crypts (a reference is provided by the
coloured arrows in the stained image).

Fig. 2(a)–(c) display chemical images from the same tissue
region shown in Fig. 1. These were calculated using the sparse
frequency absorbance datasets that comprise 10 salient IR fre-
quencies (45MB in size, ca. 20× smaller than a full band

Table 1 List of spectral descriptors useful to differentiate different colon tissue classes

Spectral
descriptor type

Peak 1 band
position (cm−1)

Vibrational
mode/assignment

Peak 2 band
position (cm−1)

Molecular
assignment

Baseline
positions (cm−1)

Protein 1656 Combination of: 1544 Combination of: 1480, 1800
Peak height ratio CvO stretching (mainly) N–H bending

N–H bending C–N stretching vibration
C–N stretching
Amide I of proteins Amide II of proteins
1656 cm−1 position is correlated
with α-helix structures
Ratio highlights gross protein
compositional changes i.e. changes
in secondary structure/amino acids

Collagen 1336 CH2wagging 1300, 1360
Peak height Amino acid proline side chains

Abundant in connective tissues
Mucin 1044 COH deformation 940, 1180
Peak height Glycosylated protein mucin

Abundant in mucus membranes
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dataset of a mosaic the same size). Fig. 2(a) shows a chemical
image based on the gross protein composition of the tissue
and was calculated by ratio of the two most prominent bands
of proteins, the amide I and amide II vibrations. After normali-
sation of the spectral vectors, a ratio of the protein bands
yields greater contrast between tissue structures than using a
single peak height alone. The colonocytes and blood cells are
provided the greatest contrast in this chemical map. Fig. 2(b)
shows a chemical image based on the presence of collagen
and was calculated using the CH2 side chain vibrations of col-
lagen. The submucosa, being comprised mostly of collagen,
has the highest contrast when using this chemical map.
Fig. 2(c) shows a chemical image based on the presence of
mucin and was calculated using a characteristic glycosylation
absorbance band in the low wavenumber part of the IR spec-
trum. The greatest contrast for the goblet cells and lumen of
the crypts was achieved using this chemical map, which again
makes biochemical sense since they both comprise high con-
centrations of muco- and glyco-proteins. The final image in
Fig. 2(d) is an RGB fused image of the chemical maps shown
in Fig. 2(a)–(c) respectively. By direct comparison to the bright-
field image captured from the parallel H&E stained section in

Fig. 1(d), the RGB image provides clear contrast of the major
colorectal tissue structures, including the mucosa, submucosa
and muscularis externa. Such chemical based images could
help identify discrete regions within large areas of tissue
where the mucosa no longer provides normal architecture, i.e.
the appearance of clusters of enlarged crypts (aberrant crypts)
and other structural hallmarks of epithelial dysplasia and neo-
plasia. The combination of these RGB type chemical images
with morphometric descriptors used in digital pathology ana-
lysis may be worth consideration. In the example presented,
colour channels were selected with colon tissue in mind,
however these can be adjusted to suit the application. For
example, lipid associated diseases (e.g. glioblastoma multi-
forme) could be visualised using the lipid ester band at
1740 cm−1, whereas disease associated changes in cellular
metabolism (e.g. hypoxia driven changes) could be tracked
using one of the characteristic glycogen peaks at 1030, 1080 or
1152 cm−1 respectively. Such simplified chemical represen-

Fig. 1 Performance of Spero 12.5X, 0.7 NA objective. (a) Reflectance
image of groups 6 and 7 of a chrome-on-glass USAF 1951 resolution
target at 1555 cm−1 (6.4 μm). The 12.5X magnification objective has a NA
of 0.7, a 650 μm × 650 μm field of view, 480 × 480 pixels, and pixel size
of 1.35 μm. (b) Line profile plot across group 6 elements that has pat-
terns of spatial frequencies down to 4.38 μm (widths of group elements
are displayed in red). (c) Mid-infrared chemical image at 1656 cm−1 of a
healthy colorectal tissue section describing a cross section through the
mucosa, submucosa and muscularis mucosae. The 3 × 3 mosaic image
encompassed a total of 2.07 million pixels. (d) Brightfield image of the
parallel H&E stained tissue section shown in (c). The coloured arrows in
the image indicate different tissue structures as follows: white = blood
cells, Green = Submucosa, Orange = Lamina Propria, Yellow = Goblet
cells of crypts, Blue = Colonocytes, Pink = muscularis mucosae.

Fig. 2 IR Chemical Images calculated using a 10-frequency targeting
protocol. The raw hypercube contained 2.07 million pixel spectra and
was 45MB in size. (a) Protein map: Peak height ratio of the Amide I (1656
cm−1)/Amide II (1544 cm−1) bands. The ratio was linear baseline cor-
rected using intensity values recorded at 1480 and 1800 cm−1. The ratio
image produced was mapped against a white-blue (min-max) colour
palette. (b) Collagen map: Peak height of collagen CH2 side chain
vibrations (1336 cm−1). The measurement was linear baseline corrected
using intensity values recorded at 1300 and 1360 cm−1. The intensity
image produced was mapped against a white-red (min-max) colour
palette. (c) Mucin map: Peak height of the strongest mucin glycosylation
band (1044 cm−1). The measurement was linear baseline corrected
using intensity values recorded at 1180 and 940 cm−1. The intensity
image produced was mapped against a white-green (min-max) colour
palette. (d) RGB Image: Each chemical map mentioned above was
merged into a single red, green, blue colour image.
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tations of the tissue could serve both pre-clinical and clinical
needs in routine screening applications. More recently, it has
been pondered whether all the frequencies that are routinely
collected in a broadband FT-IR measurement are required for
infrared spectral staining/diagnostics.1,4,26,27 Subsequent proof
of concept studies performed using QCL microscopy techno-
logy have shown great promise.13–15 However, more exhaustive
investigations into clinically relevant patient populations is
still required to ascertain whether frequency targeting proto-
cols can be sufficiently robust.

Fig. 3 displays results obtained from the multivariate ana-
lysis of a full band second derivative dataset acquired from a
diseased colorectal tissue section (3 × 3 mosaic image, 918 MB
in size, ca. 20× larger than a sparse 10 frequency dataset of the
same mosaic size). After pre-processing and quality check the
mosaic composed 1.65 million pixel spectra. Fig. 3(a) displays
the brightfield image captured from the parallel H&E stained
section. Fig. 3(b) displays the k-means clustering image (6 clus-
ters) calculated from the derivative infrared dataset. Both the
mean absorbance and second derivative spectra were calcu-
lated for the cluster analysis and are displayed in Fig. 3(c) and
(d) respectively. The absorbance data was baseline corrected
using an asymmetric least squares approach (Eilers algorithm,
5 iterations),28 and normalised for clarity before calculation of
mean cluster spectra. This is the first report, to the authors

knowledge, of rigorous analysis performed on full fingerprint
region second derivative spectra recorded using a QCL infrared
microscope. It has been reported that scattering effects, ampli-
fied by the coherent light source, can cause unwanted arte-
facts.25 Unsupervised methods of multivariate analyses are
very sensitive to these types of structures in the spectral and
spatial domain but were not observed as problematic in these
tissue studies. By observation of the mean cluster spectra, it
appears segmentation of the different structures within the
colonic crypts are predominantly caused by intensity differ-
ences at several characteristic glycosylation bands located at
1044, 1076, 1120 and 1374 cm−1 associated with mucin. A
strong lipid ester band at 1740 cm−1 is also observed for cell
types of the crypts. The submucosa, in contrast, provides a
number of strong bands that can be directly attributed to the
structural protein collagen with bands located at 1204, 1236,
1280, 1336 (amide III), and 1452 cm−1 respectively.
Spectroscopic differences between the lamina propria and
adenocarcinoma are far more subtle, and are located at
nucleic acid-related vibrations at ca. 964, 1062, 1090 and
1236 cm−1 respectively, with again very small differences in the
amide I and amide II band profiles.

Conclusions

The results presented in this contribution lend further
evidence to the great promise of QCL infrared microscopy. The
technology can provide high resolution, high throughput IR
chemical images useful for infrared based spectral pathology.
The efficiency of frequency targeting protocols will be subject
to continued debate within the spectroscopic community in
the coming years, especially when considering confounding
band lineshape distortions that can be caused by scattering,
which may necessitate collection of full band spectra for
robust correction. However, such concerns shall likely
dissipate as QCL imaging technology achieves even faster data
acquisition speeds. With a myriad of possible diagnostic
applications, it is reasonable to expect that for some cases,
sparse frequency protocols can realise higher throughput
without sacrificing accuracy. Proof of concept studies
performed on breast tissue microarrays13 and blood sera14

have shown great promise. However, further work needs to be
performed on significantly larger patient numbers to fully
understand and realise the potential of the technology.
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Fig. 3 Spectral staining of a diseased adenocarcinoma colorectal tissue
section using unsupervised multivariate analysis. The raw hypercube
contained 2.07 million pixel spectra and was 918 MB in size. (a)
Brightfield image of the parallel H&E stained tissue section examined by
infrared microscopy. (b) k-Means clustering image (6 clusters) calculated
from a full band (900–1800 cm−1) second derivative infrared dataset.
(c) Mean absorbance spectra calculated for the k-means cluster analysis.
(d) Mean second derivative spectra calculated for the k-means cluster
analysis.
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