
Trends
3D chemical imaging is achieved by
several spectromicroscopic methods.
These provide a quantitative analysis
of tissue content and substructures
with a depth of information that no
other histological technique can deter-
mine from the same sample. However,
they are currently underexploited
despite their potential.

Standardization of spectral data acqui-
sition and treatments is the next fron-
tier in the development of 3D chemical
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Mid-infrared (IR), Raman, and X-ray fluorescence (XRF) spectroscopymethods,
as well as mass spectrometry (MS), can be used for 3D chemical imaging.
These techniques offer an invaluable opportunity to access chemical features
of biological samples in a nonsupervised way. The global chemical information
they provide enables the exploitation of a large array of chemical species or
parameters, so-called ‘spectromics’. Extracting chemical data from spectra is
critical for the high-quality chemical analysis of biosamples. Furthermore, these
are the only currently available techniques that can quantitatively analyze tissue
content (e.g., molecular concentrations) and substructures (e.g., cells or blood
vessels). The development of chemical-derived biological metadata appears to
be a new way to exploit spectral information with machine learning algorithms.
imaging routines. This methodological
effort is required to advance the devel-
opment of reliable analytical tools for
the biosciences and industry.

Spectromics is emerging as a new
trend for nonsupervised and auto-
mated data treatment from 3D spec-
trummatrices. It has the advantages of
being able to use all the chemical infor-
mation available from spectra and of
interpretability, since spectral data can
be converted into biological metadata.
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Spectromicroscopy of Biological Samples
Tomography (see Glossary) was a technological breakthrough first reported in 1979, and
tomography image reconstruction methods have been extensively developed since this initial
report. Magnetic resonance imaging (MRI) and X-ray computed tomography (CT) are well-
known examples of such methods. They provide a 3D visualization of organs, which can depict
anatomical features that are of diagnostic value. However, in smaller biosystems, such as cells,
tissues, or small-animal organs, these techniques are limited by their resolution and sensitivity.
Thus, there is a lack of reliable 3D imaging solutions at the microscopic scale for use in
biological analysis [1]. Fluorescence-based imaging techniques can perform 3D analyses on
small biosamples, mostly cells and small tissue blocks, but their penetration depth is limited
(Table 1) and the use of labels restricts the analytical value of the 3D images [2]. This is a major
frontier in biological research, where supervised techniques depending on labels or contrast
agents can no longer satisfy the discovery appetite for biospecimens. Better-quality images of
biosamples, at higher resolution, with higher contrast, and providing larger quantities of
information, makes the addition of global chemical information more important. This is particu-
larly true when several (or amultitude of) chemical compounds of tissues need to be revealed by
histology (Box 1).

The first issue with spectromicroscopies is that there is a mismatch between their intrinsic
analytical capabilities and the requirements of histological analyses, which require sample
information at the 5–10-mm spatial resolution for a 1 mm3

–1 cm3 tissue volume. They
can achieve better lateral resolution, but their penetration depth is much less than 1 mm.
Additionally, analytical performances must be balanced over the limits of scanning duration to
obtain a signal:noise ratio (S/N) allowing high-quality spectral data treatments. These require-
ments define the practical performances of these analytical methods, which have been
reviewed for different 2D application cases [3–6], but never for 3D histological analyses. Four
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Glossary
3D spectrum matrix: a set of
spatially organized spectra that
represents the raw chemical
information about a sample volume.
Biological metadata: biological
content that is reconstructed from
another source of sample information
(chemical, anatomical, etc.).
Chemical imaging: imaging a
sample from a light-matter interaction
(typically absorption, reflection, and
transmission; but also exploiting the
size or mass of molecules or their
fragments) that reveals its chemical
composition.
Nonsupervised analysis: use of
statistical methods that perform the
comparison between samples based
on all the sample information
available. The more information
available, the better the ability of
multivariate statistics will be to
discriminate between samples.
Spectromics: the use of all the
available information in spectra for
characterizing a sample. Similar to
any other ‘omic’, its aim is the
collective characterization and
quantification of pools of chemical
data that translate into the sample
contents (substructures, cells,
molecules, etc.).
Tomography: imaging a sample by
sections or sectioning through the
use of any kind of penetrating wave.
It requires co-adding projections
from several visualization angles to
reconstruct the internal structure of
the sample in 3D. However, this
does not require the physical
sectioning of the sample.
spectromicroscopy techniques have been shown to achieve 3D chemical imaging of tissues:
IR spectroscopy [7–10], Raman spectroscopy [11–13], MS [11,14–16], and XRF [17–19].

These spectromicroscopies cannot rival fluorescence-based imaging techniques in terms of
resolution and penetration depth. However, in terms of sample area scanned per unit of time (in
minutes), IR and MS match the performance of multiphoton microscopy. Thus, with appropri-
ate 3D reconstruction methods, a 3D view can be achieved; the advantage of spectromicros-
copies stems from their ability to provide many different chemical data compared with the two
or three labels possible with multiphoton microscopy. Finally, the main advantages of spec-
tromicroscopies are that they can provide extensive, if not global, quantitative chemical
information about the sample without a priori supervision (compared with label-related
histology).

Which Method to Choose for the 3D Chemical Imaging of Tissues?
The choice of a spectromicroscopy method for chemical imaging of a tissue block will depend
on a compromise between three resolutions (spectral, lateral for 2D, and spatial for 3D), the kind
of chemical species to investigate, and the targeted sensitivity. In terms of 3D analyses by
spectromicroscopies, a few studies have shown that tomographic analysis can be directly
performed on small biosamples, such as intact hair with synchrotron radiation for IR micros-
copy [8], confocal Raman microscopy for living cells [13], or XRF microscopy of zebrafish
embryo [17], also using a synchrotron radiation source. These tomographic imaging methods
have been made possible within the limits of the penetration depth for each technique (i.e.,
before total photon absorption is reached). The ability to analyze larger objects in the future
could come from the use of more-intense light sources, but this is largely compromised by the
ionizing radiation induced by X-rays for 3D-XRF imaging or sample heating induced by more-
intense lasers used in 3D-Raman imaging [20]. High radiation doses or laser heating will deeply
modify the chemical content of tissues, such as the loss of protein native conformations, nucleic
acid fragmentation, lipid transesterification, and so on, which will also strongly modify the
chemical information contained in the spectra. The development of more-sensitive or ‘zero-
noise’ detectors [21] is also expected to extend the application field of tomographic imaging by
spectromicroscopies, but it will not allow the analysis of bigger samples. In general, the
volumetric limit of these tomographic methods is less than 1 mm3 and, thus, insufficient for
3D histology.

Therefore, for 3D chemical analysis of large tissue samples with spectromicroscopies, it is
necessary to split the sample into fractions that can be further reconstructed as a 3D volume.
For soft tissues, this is mainly performed by continuous sectioning, although MS imaging (MSI)
uses laser ablation for time-of-flight scanning ion-MS (ToF-SIMS). Then, a transmission
measurement combined with laterally resolved scanning can quantitatively analyze the chemi-
cal content. Computing techniques can produce 3D stacks of successive 2D images of a tissue
block or an organ that have been continuously sectioned, dyed, or stained, imaged, and
segmented for 3D visualization [22]. However, for spectromicroscopies, it is preferable to use
fresh tissue sections, unmodified by staining or embedding methods, to ensure that the native
chemical composition of the sample is maintained before analysis [23].

Once organized as a 3D spectrum matrix representing the ‘spectral image’ of the sample,
spectra can be processed to extract chemical information. The methods for data extraction
vary between spectroscopy techniques (Figure 1). However, before the chemical data are
extracted from the spectra, it is also important to take into account the nature of the spectral
data, revealed as peaks or bands, which have shapes that can be described mathematically.
Raman and IR spectroscopies provide sharp and large bands, respectively, while XRF spec-
troscopy and MS provide sharp peaks. Therefore, mass and XRF spectroscopies provide
2 Trends in Biotechnology, Month Year, Vol. xx, No. yy



TIBTEC 1541 No. of Pages 14

Table 1. Typical Analytical Performances of Spectromicroscopies for Chemical Imaging of Soft Tissuesa[518_TD$DIFF]

Technique Penetration
[519_TD$DIFF]depth (mm)

Lateral
resolution (mm)

Z-axis [520_TD$DIFF]

resolution (mm)
Spectral [521_TD$DIFF]interval,
(resolution)

Field of view
(mm � mm)

Tissue [522_TD$DIFF]area
covered/min
(mm2)

Accessible
chemical
data (n)

Refs

Confocal
imaging

500 0.2 1 None 200 � 200 160 000 000 000 Individual [2]

Multiphoton
microscopy

1000 0.3 0.5 None 200 � 200 1 000 000 Up to 3 [2]

Multiphoton
with clearing

5000 0.3 0.3 None 200 � 200 1 000 000 Up to 3 [2]

IR 30 5–10 None 500–4000 cm�1
[523_TD$DIFF]

(2–8 cm�1)
2000 � 2000 800 000 100–200 [10,25]

Raman
confocal

50 4–32 0.08–0.50 100–4000 cm�1

(0.5–4 cm�1)
Single point
volume

70 000 50–100 [2,13]

MS 0.01 10–100 None 500–10 000 m/z,
(1–10 m/z)

Single point
volume

1 500 000 100–1000 [45,48]

XRF 20 5–20 None 1–60 keV
(0.1–0.5 keV)

10 000 �
10 000

100 000 5–20 [17,55]

aThese values take into account the expectation of histological analyses, which require usually a microscopic resolution of 1–10 mm from tissue sections of 4–20 mm
thickness. Fluorescence imaging techniques are included to compare the analytical performances of 3D chemical imaging techniques with the current gold standards
of 3D histological analyses.
chemical data with more accurate identification. XRF spectroscopy is favorable because
elements can be easily identified, although the number of peaks is limited. Given the high
sensitivity of MS, m/z spectra can reveal hundreds of peaks. Raman spectroscopy is the least-
sensitive vibrational spectroscopy technique discussed here, but identifying chemical contents
is easier than for IR because of sharper bands. In turn, IR spectroscopy is more sensitive and
provides more chemical data, but the overlap between bands is more pronounced.

3D-IR Spectromicroscopy
IR microscopy has long been powered by IR interferometers, thus requiring a Fourier transform
of the interferogram to obtain IR spectra. Since 1986, this technique has been known as
‘FTIR spectrometry’ or ‘FTIR spectromicroscopy’ when associated to a microscope. Two
major technological developments have paved the way towards its better analytical
Box 1. Analytical Supervision, Chemical Imaging, and Spectromics

A supervised technique uses labels or contrast agents to highlight chosen sample contents. By contrast, nonsupervised
techniques do not use labels or contrast agents but instead use the natural contrast of the sample. For example,
chemical imaging is the analytical ability to create a visual image of the distribution of components based on
simultaneous measurements of spectral and spatial information (to which can be added temporal information). This
analytical domain might be extended to chemical information from contrast agents, such as radionuclides for positron-
emission tomography (PET). However, in this instance, one piece of information is collected, the contrast agent, while
spectroscopies offer an array of chemical data from collected spectra. For the chemical imaging of biosamples,
spectroscopies produce spectral data from the interaction of light (mainly IR, ultraviolet, or X-rays) or ions (ion-MS) with
matter, and the results depend on the composition of the biosample. With spectroscopies, chemical imaging covers
two major fields: hyperspectral imaging, which measures contiguous spectral bands (IR spectroscopy, for example),
and multispectral imaging, which measures spaced spectral bands from different regions of the electromagnetic
spectrum. With contiguous spectral bands, deconvolution techniques must be applied to separate chemical data. The
spectroscopies currently used for the chemical analysis of biosamples are known as hyperspectral techniques. When
they are coupled to a microscope or when they can laterally scan a sample, they are called ‘spectromicroscopies’ and
provide a laterally resolved chemical analysis of the biosample. When used to extract all the chemical data provided in
spectra, spectroscopies open the way to nonsupervised analyses of biosamples, so-called ‘spectromics’: this is the
nonsupervised exploitation of chemical data without a priori understanding to compare samples or conditions.
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Figure 1.

(Figure legend continued on the bottom of the next page.)

Physical Principles of Spectromicroscopy Methods Providing Global Chemical Information from Tissues. The infrared (IR) and Raman bands
can be described by their position (l), intensity (i), full width at half height (FWHH), and Gaussian/Lorentzian fraction (h). The mass and XRF peaks are described by their
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performance: first, the use of focal plane array (FPA) detectors, introduced in 1995, and
second, the advent of powerful IR sources with quantum-cascade lasers (QCLs) in 2014.
Now, IR spectromicroscopy can produce millions of IR spectra per hour with high S/N. This
innovation has led to new developments in IR image analyses for biosamples, such as high-
speed discrete frequency infrared (DFIR) imaging to obtain stain-free biochemical images of
tissue sections in minutes [24], or even 3D-IR image reconstructions for the quantitative
analysis of metabolic or biochemical parameters [25].

The 3D-IR image reconstruction from a stack of consecutive 2D-IR images faces several
technical issues. The complete sectioning of a mouse brain at a thickness of 20 mm generates
approximately 350–400 sections and, thus, the same number of 2D-IR images. As recently
described [25], it is impossible to reliably analyze so many tissue sections with FTIR instru-
ments, which were found to be too slow for the acquisition of 2D-IR images at a resolution close
to the diffraction limit. For example, a mouse brain section approximately 8 mm in diameter,
with 100 scans at 4 cm�1 and a desired S/N of approximately 100–150, would require 80–
100 h of acquisition time. It is not possible to maintain the S/N stably over these long acquisition
periods. Comparatively, QCL-IR microscopes speed up the acquisition process by a factor of
50. It is obvious that the background conditions and S/N level can bemore easily maintained for
2 h compared with 100 h. As a consequence, while FTIR imaging can be used to analyze small
tissue blocks (<1 mm3) to resolve tissue substructures [26], QCL-IR imaging enables the
analysis of larger tissue volumes, up to a whole mouse brain [25] (Figure 2).

These first 3D-IR image reconstructions of tissue substructures were possible as a result of
recent developments [27,28] in baseline corrections for normalizing IR spectral absorptions
before performing reliable curve-fitting procedures. There is no universal tool for curve-fitting a
spectrum comprising widely overlapping bands [29]; thus, the number of bands that can be
extracted from it is indefinable in the absence of a robust mathematical model [30]. However,
several studies have shown that spectral intervals can be exploited to extract IR bands that
have been clearly identified for fatty acyl chains in the 3050–2800 cm�1 spectral interval
[31,32], and for the secondary structure of proteins containing amide 1 (1720–1600 cm�1

spectral interval [33–35]), among others.

In the future, and for all the spectromicroscopies, the complete curve-fitting of spectra might
represent a major advance in the extraction of chemical data for the analysis of tissue sample
content. Interestingly, all of the peaks identified at the surface of a second derivative IR
spectrum can be also revealed by automatic curve-fitting [27], but this strategy provides four
times more chemical data (Figure 2). This observation justifies pursuing the standardization of
this spectral data treatment to extract the largest series of chemical data from spectra. As
shown by a few recent studies, blood vessels [26], cell phenotypes [36], fibrotic tissue [23], and
extracellular matrix [37], to name a few, can be recognized in tissues with appropriate spectral
data treatments.
intensity (i) at givenmass:charge ratio (m/z) or energy (keV) levels, respectively. Therefore, X-ray fluorescence (XRF) andmass spectra (MS) only require the identification
or localization of the peaks and calibration of their intensity scale to extract quantitative information. Due to the nature of the spectral data (i.e., bands, of IR and Raman
spectroscopies), the spectral data treatments will be more sophisticated. This is due to the large overlap between adjacent bands for complex biological sample
spectra, meaning that using the intensity at a given l is rarely characteristic of a single band. This phenomenon is even more pronounced for IR spectroscopy, which
provides large absorption bands. Thus, depending on the bands expected from spectra, Raman and IR spectroscopies will need to use second-derivative or curve-
fitting methods [29]. While analyzing frozen tissues, the main analytical performances vary by technique: IR (section thickness: 5–25 mm; best 3D resolution: 10 mm;
sensitivity: +++); Raman (section thickness: 5–40 mm; best 3D resolution: 5 mm; sensitivity: ++); MS (section thickness: 5–50 mm; best 3D resolution: 10 mm; sensitivity:
++++); and XRF (section thickness: 5–25 mm; Best 3D resolution: 10 mm; sensitivity: +).
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Figure 2. Examples of 3D Tissue Spectromicroscopy Techniques. (A) 3D-infrared (IR) imaging of small tissue substructures and a whole mouse brain. (i)
Biological metadata (here blood capillaries) can be reconstructed based on extracted spectral data (here using major absorptions from the collagen-rich basal
membrane of blood vessels, triple helix absorption at 1637 cm�1 and a-helix absorption at 1656 cm�1). This analytical concept can be systematized to the whole brain
to reconstruct the microvascular network. (ii) 3D visualization of mouse brain anatomy based on the lipid:protein absorption ratio [ʃ(3020–2800 cm�1)/ʃ(1705–
1480 cm�1)] for 370 consecutive tissue sections. (B) IR spectra curve-fitting for extracting individual IR absorption bands. (i) Curve-fitting of the 3050–2800 cm�1

spectral interval for a typical membrane phospholipid [31]. (ii) Classical curve-fitting result obtained for the amide I spectra interval, revealing the secondary structure
parameters of proteins, among others. Complete curve-fitting of the IR spectrum fingerprint region (1800–900 cm�1) can produce 80–100 individual bands depending
on the precision of the mathematical model used. Thus, it can provide more chemical parameters than peak-picking on a second derivative spectrum (85 versus 21
chemical structures in this example of IR spectrum of a brain tissue). (C) Mouse brain 3D image by desorption electrospray ionization (DESI)-MS imaging. (i) top, side,
and cross-sectional views are shown for the 3D construction of the distribution of (a) PS 18:0/22:6 in green, (b) ST 24:1 in red, and (c) PI 18:0/22:6 in blue. The same
views are shown for the transparent overlaid distributions of the lipids (d) PS 18:0/22:6 and ST 24:1 and (e) PS 18:0/22:6 and PI 18:0/22:6. (ii) DESI mass spectrum
obtained from a 20-mm-thick mouse brain coronal section at Bregma:�1.060 mm in the (a) gray matter and (b) white matter region. Themost intense ion present in the
gray matter at m/z 834.4 was identified as PS 18:0/22:6. In the white matter, the most intense ion at m/z 888.8 was identified as ST 24:1. (D) Volume rendering of a
Daphnia magna sample. The full 3D absorption reconstruction of the daphnid (3-mm resolution) was obtained by a micro-computed tomography (CT) system. Two
RGB-composed micro-XRF data sets obtained at HASYLAB, Beamline L were incorporated in the image: a micro-XRF 2D dynamic scan (height 175 � 20 mm, width:
122 � 20 mm) and a micro-XRF CT cross-section (width 165 � 20 mm) through the gill tissue, eggs, and gut. Zn density is the green channel, Ca density is the red
channel, and Fe density is the blue channel. Reproduced, with permission, from [26] (A), [31] (Bi), [59] (Bii), [48] (C) and [55] (D).
3D-Raman Spectromicroscopy
Raman microscopy applications in biosciences have been recently reviewed [3] but without
discussion of whether the technique is suitable for 3D histology. Thus, it is interesting to
compare the IR and Raman techniques (Table 2). These techniques are usually considered as
complementary in biosample analysis, although IR is more sensitive and Raman offers better
lateral (i.e., along the z-axis) resolution (<1 mm) [13]. In principle, this property should give a
significant advantage to Raman spectromicroscopy for resolving small tissue substructures [i.
e., where the IR technique is already diffraction limited (<5–10 mm for the mid-IR range)].
However, this higher resolution is not easily exploitable. In fact, there are three major limits to
Raman microscopy for the analysis of tissues: (i) the image data size becomes huge at high
resolution (the data size for a 3D spectrummatrix should reach 11 TB for a 1-cm3 tissue block at
10-mm resolution, and 1000�more at 1-mm resolution); (ii) the better the spatial resolution, the
6 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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Table 2. Major IR and Raman Band Assignments for Soft Tissuesa

Vibrational mode (functional
group)

IR frequency (cm�1
[524_TD$DIFF]) Raman [525_TD$DIFF]shift (cm�1) Molecular information

Amide A, B 3300, 3100 Fermi resonance between N-H stretch and overtone of Amide II,
sensitive to secondary structure

n(-C¼C-H) stretch 3010 Fatty acyl chains unsaturation

nas(-CH3) stretch 2960 2960 Predominantly due to proteins

nas(-CH3) stretch 2875 2932 Predominantly due to fatty acyl chains

nas(>CH2) stretch 2924–2916 2880 Predominantly due to lipid, frequencies qualitatively

ns(-CH3) stretch 2870 Predominantly due to lipid, frequencies qualitatively

ns(>CH2) stretch 2855–2848 2850 Monitor acyl chain conformational order and packing

n(>C¼O) 1730–1760 Due to acid carbonyls

n(>C¼O) 1740–1720 1735 Due to ester carbonyl, sensitive to hydrogen bonding

Amide I 1685–1630 1670–1650 Predominantly due to C¼O stretch, sensitive to secondary and tertiary
structures

n(>C¼O) 1684, 1672, 1664, 1656,
1645, 1637, 1625, 1610

Proteins, b-turns, antiparallel b-sheets, parallel b-sheets, a-helix,
unordered structure, a-like triple helix, antiparallel b-sheets, parallel
b-sheets

n(-C¼C-) Weak 1660–1600 Sensitive to conjugation

Amide II 1550–1530 Predominantly due to N-H in-plane bend and C-N stretch, sensitive to
secondary structure

d(>CH2), d(-CH3) 1475–1460 1452–1440 Methylene modes in IR sensitive to acyl chain packing

ns(>COO�) 1450–1400 1420–1400 Due to NMF components and amino acid side chains

v(>CH2) 1337 IR marker for Pro in collagen

t(CH2) 1298 Trans acyl chain

Amide III 1275–1235 1270–1210 C-N stretch and N-H in-plane bend, sensitive to secondary structure

nas(P=O) 1227 Phosphates

n(C-C) skeletal 1130, 1060 Trans acyl chain

n(PO2
�) 1089 1090 DNA

n(C-O-C) 1020–1040 Glucose (hemiacetal), glycogen a(1!4) glycosidic bonds

n(C-C) aromatic ring 1003 Phenylalanine

n(C-C) 940, 925, 880, 860 Collagen (Pro & HYP residues)

n(C-C) pyrimidine ring 780 Cytosine

n(C-C) 702, 605 Cholesterol

aData from [6,12,26,29,31,32,38,40].
longer the acquisition duration, which can progressively lead to changes in ambient conditions
between themoment of the background acquisition and the Raman spectra several hours later;
and (iii) the better the spatial resolution, the smaller the organic material amount for each voxel
and, thus, a lower S/N will be obtained. Therefore, analyzing tissue blocks at 1-mm resolution
will alter the quantitative value of the chemical analysis performed. In addition, no study has yet
provided an analytical demonstration of this approach. However, similarly to recent improve-
ments in IR microscopy, an improvement in the sensitivity of detectors and/or the use of
ultrafast lasers to speed up the acquisition of Raman spectra might re-equilibrate the analytical
performances achieved by these two vibrational spectromicroscopy techniques for the analysis
of large biosamples with 3D applications.
Trends in Biotechnology, Month Year, Vol. xx, No. yy 7
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The main issue for the analysis of tissues is that modern Raman microscopes do not contain
adapted optics that can analyze samples at 5–20-mm lateral resolutions. The optics currently
used for Raman microscopy provide 200–500 nm resolution depending on lasers, further
specializing this technology for use in nanophotonics. Thus, without the development of optics
to adapt existing Raman microscopes for image acquisitions several microns in resolution, the
issues raised through sample heating by lasers, data file sizemanagement, and acquisition time
will not be easily overcome. Nevertheless, Raman spectromicroscopy has already been used
for the 3D analysis of small biospecimens, mostly cells [12,38], while, for histology, it has been
often used for 2D analyses, resulting in several diagnostic methods that have successfully
detected tumors andmetastases [39]. Thus, it is likely that Raman spectromicroscopy will have
a role in the clinic in the future [40]. Another advantage of its high resolution is that it can be used
to highlight subtle changes in small tissue substructures, such as endothelial dysfunctions
induced by metastases [12], the abnormal inclusion of lipid droplets in cells [38], and so on.

On Raman spectra, the number of chemical parameters that can be extracted is smaller than
that with IR spectra (Figure 1). The most-advanced studies for the analysis of tissues show that
Raman spectra could provide up to 30–40 bands if an appropriate curve-fitting method is used
[41]. Raw Raman spectra exhibit approximately 20 peaks, which is comparable to IR spectra.
However, curve-fitting methods are rapidly limited by the noise level in the spectra, thus altering
the resolution of many different bands from raw spectra. Although smoothing procedures may
reject high-spatial frequency noise without introducing detectable nonlinearities [41], they also
reduce the number of resolved bands. Therefore, both the limited laser power for nondestruc-
tive data acquisitions and the requirement for the fast analysis of large planar areas result in
noisy Raman spectra, and only a few bands can be extracted for quantitative analyses based
on a linear signal [42]. This observation reinforces the need to improve the technology so that
Raman spectromicroscopy might become more routinely applicable to tissue block analysis.

3D-Mass Spectrometry Imaging
MSI techniques have two possible applications: the analysis of either inorganic or organic
content throughmass fractions [43]. In principle, MSI provides chemical data without labels and
can perform 3D imaging with 1-mm lateral resolution or better, and with depth resolution down
to a few nanometers. In general, MSI techniques include a spatially resolved ionization method
to collect mass spectra from an array of positions across a sample [44,45]. Basically, two major
types of MSI technique are used for tissue analysis: laser ablation inductively coupled plasma
MS (LA-ICP-MS) imaging and ToF-SIMS imaging [46]. LA-ICP-MS imaging is best suited for
analyzing inorganic content, while ToF-SIMS imaging is best for organic content. LA-ICP-MS
offers the lowest limits of detection in themg.g�1 range [47], which is required for tissue content
analyses. In practice, ToF-SIMS and LA-ICP-MS are well-established techniques that are used
for molecular imaging under vacuum, which limits the development of the technique due to
complicated and delicate sample preparations. However, ambient ionization methods, such as
desorption electrospray ionization (DESI), have recently been introduced [48]. DESI-MSI has
the advantages of not only ambient analyses, but also easier sample preparation and simplified
analysis. In an effort to reconstruct a whole-mouse brain volume by DESI-MSI (Figure 2), the
most abundant lipids of the organ could be detected in the negative-ion mode and recon-
structed as a 3D image.

A compromise is sought between resolution, time of acquisition, and quality of spectral data for
the 3D reconstruction of chemical parameters, with the result that, for 200 sections (out of 560
for the whole brain), only 36 20-mm-thick representative sections could be analyzed for 200-
mm lateral resolution data acquisition. Mass scans lasted 1.16 s per pixel (67 min per section)
for a total 40 h acquisition time to obtain a 3D model. From this 3D spectrum matrix of
approximately 125 000 mass spectra, the most abundant ions in the mass spectra, m/z
8 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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834.4 and m/z 888.8, could be identified as the phosphatidylserines 18:0/22:6 (green in
Figure 2) and the sulfatide 24:1 (red in Figure 2), respectively. The spectra extracted from a
2D section showed the two major peaks formed by these molecules and a series of small other
peaks (approximately 18 identified, combining white and gray matter spectra for the 100–
1100 m/z range).

The current state of the art is far from the submicron resolution potential of the technique, with
large m/z data sets to exploit from the obtained 3D spectrummatrix. In fact, such a 3D imaging
achievement, among other examples [49], shows the difficulties encountered by 3D-MSI for the
analysis of large tissue blocks. The current limits of 3D-MSI for tissue analyses are as follows: (i)
on a large tissue block, 3D-MSI produces only a few reliable peaks for quantitative molecular
analyses; (ii) MSI does not analyze the complete tissue volume (ablation is a surface extraction
procedure that does not include all the tissue material but just a fraction of it), thus restricting
quantitative analyses in 3D; (iii) as for any other spectromicroscopy technique, the ability to
extract given molecular parameters depends on the relative abundance of these chemical
species ‘as read in the spectra’; and (iv) MSI must a priori choose them/z range to analyze, thus
defining which molecular parameters are of interest for a tissue.

These factors limit the application of nonsupervised analyses to MSI. In fact, the more the
sample is chemically complex and the larger the m/z range scanned, the more the mass
spectrum becomes unreadable with a multitude of data, and there is little immediate correlation
between these data to identify molecular entities [50]. Finally, with a softer fragmentation
method, or by focusing on tissues that exhibit lower chemical complexity, reducing the number
of peaks in mass spectra enables the reconstruction of some, but not many, molecular entities
[51].

MSI is also able to quantitatively analyze metal ions in biological samples [52], which is a major
analytical challenge considering the relatively weak concentrations of these chemical species.
Metals are found in every cell, are present inmore than 30%of proteins, and are essential for the
function of most enzymes, yet their concentration remains low (Table 3). LA-ICP-MS imaging
has no rival in metal analyses because it offers the highest sensitivity and, thus, allows
quantitative rendering in 3D after image reconstruction from seriated tissue sections. The
most problematic issue for metal imaging is the frequent contamination of tissues by exoge-
nous metals in sampling steps, such as cryosectioning, deposition on substrates, and so on.
Another concern for validating quantitative studies is that a destructive technique, such as LA-
ICP-MS, does not allow any further measurement of the sample. However, this is true for all
techniques currently available for analyzing metals in tissues [53].
Table 3. Concentration of Main Organic and Inorganic Contents in Several Mouse Organsa

Tissue Fe (mg.g) Cu (mg.g) Zn (mg.g) Water (%) Lipids (%) Proteins (%) Polysaccharides (%)

Brain 15–30 1.1–2.1 6–15 68.5–82.6 5.3–18.1 10–11.5 0.2–0.4

Adipose 9–17 0.1–0.3 5–12 11.4–30.5 61.4–87.3 7–8.1 –

Muscle 160–190 0.3–1.7 28–45 70–78.6 1.6–6.8 17.9–21.3 0.2–0.6

Liver 220–280 1.6–5.0 30–44 72.8–75.8 1.5–7.8 16.1–19.6 0.4–0.6

Kidney 250–310 0.6–4.5 10–55 72.3–80. 5 2.8–6.9 15.8–19.9 0.1–0.2

Heart 280–380 5–13 20–33 71–80.9 2.4–10.1 15.9–18.2 0–0.1

aData from [60,61].

Trends in Biotechnology, Month Year, Vol. xx, No. yy 9



TIBTEC 1541 No. of Pages 14
3D X-Ray Fluorescence Microscopy
An alternative to MSI methods for analyzing trace elements andmetal ions in biosamples is XRF
imaging. A comprehensive review of metal ion imaging in biological samples was recently
published [52], albeit without tackling the 3D application question. XRF imaging can detect
trace elements in biological samples with submicron resolution. XRF spectra of a sample are
obtained using electron beam, proton beam, or X-ray (photon) beam methods. Several
biosamples could be scanned for 3D mapping, such as for a small part of the mouse brain
[54], or smaller specimens (<1 mm3), such as Daphnia magna [55] (Figure 2), Caenorhabditis
elegans [56] or zebrafish embryos [57]. Compared with MSI, the development of nondestruc-
tive elemental imagingmethods with XRF is feasible when an attenuated X-ray source is used to
minimize the ionization on the sample. Recently, it was demonstrated that specimens of several
mm3 could be analyzed at resolutions down to 10–20 mm with a good sensitivity to reveal the
distribution of several elements.

However, larger tissue blocks (�1 cm3) have not yet been analyzed, due to the low sensitivity of
the technique at histological resolutions. A 15-mm spatial resolution was achieved in the
example shown in Figure 2, but this was for a biological specimen that presents a naturally
high concentration contrast for Zn, Ca, and Fe ions, and several-folds higher than for soft
tissues and organs found in vertebrates and mammals. Therefore, the applications of this
technique for biosciences in general, or more specifically for biomedical and pharmaceutical
research, are still limited. The development of more-sensitive detectors, rather than more-
powerful sources (inducing harmful ionization in the sample), appears to be the way to enhance
the 3D quantitative rendering of XRF spectromicroscopy for 3D histology.

The Technological Chain of 3D Chemical Imaging
With spectromicroscopy, the main issues for producing 3D chemical images are the sampling
procedures, the management of S/N for obtaining reliable quantitative information throughout
the 3D spectrum matrix, and the automation of most spectral data treatments for 3D image
reconstruction. These issues will define the next generation of microscopes designed for
developing 3D chemical imaging applications and the technical chain required for routine
use by end-users who will not be spectroscopists, but rather physicians and biologists.

Here, the term ‘big data’ in 3D chemical imaging holds a double meaning, since a 3D spectrum
matrix is at the same time massive and contains complex chemical information. The massive
nature of the information is due to the huge number of spectra. However, the complex nature of
this information stems from the fourth dimension of the voxels, the spectral data, which require
advanced data treatments to extract the ‘embedded’ chemical information (e.g., individual
absorption bands in IR and Raman spectra by curve-fitting methods). Furthermore, the analytic
(i.e., the algorithms performing spectral data treatments to produce biological metadata) will
require major computing resources, combining CPU means for high-performance calculation
with GPU cards for both parallelized calculation on spectra and visualization of 3D recon-
structed results.

Spectromics and Automation in 3D Chemical Imaging
Universal data treatment methods must be established for extracting chemical parameters
provided by spectromicroscopies. This idea is paving the way to spectromics, the systematic
and nonsupervised exploitation of all chemical data extracted from spectra, which was recently
introduced for spectroscopies [26,58]. Spectral data treatments appear to be one of the most
urgent issues to solve for developing any further 3D chemical imaging by spectromicroscopies.
Expanding the concept of spectromics requires that chemical data derived from spectra
(individual bands for IR and Raman, peaks for mass and XRF) can be used for the two different
10 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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analytical strategies: supervised analyses, where spectral data represent known chemical
species or for reconstructing biological metadata of interest, and nonsupervised analyses,
where spectral data are used for highlighting differences between samples or sample compart-
ments (Figure 3).

As shown with IR spectro-microscopy and MSI, a supervised approach is required to recon-
struct tissue substructures from its chemical contents. This requires cross-registration between
the anatomical visualization of the sample and its chemical characterization by a spectromicro-
scopy method, thus combining histological (H&E, IHC, etc.) and chemical analyses. Briefly, the
voxels corresponding to the substructure are selected and the chemical data are used to
establish an exclusive chemical profile with all the other sample voxels. The nonsupervised
approach exploits the whole set of chemical data extracted from spectra, without a priori
knowledge. The two approaches are complementary by essence, but they must be used
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For a Figure360 author presentation of Figure 3, see the figure online at http://dx.doi.org/10.1016/j.tibtech.2017.08.002#mmc1
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Box 2. Automating Spectra Curve-Fitting for 3D Chemical Imaging

Technologically, MSI and IR imaging appear close to reaching the expected analytical level for large-scale automated
curve-fitting on 3D spectral images. With further technological improvements, highlighted below, Raman and XRF
techniques are also likely reach the required analytical level: (i) A sensitivity (or S/N) level must be reached before curve-
fitting methods can be developed for massive series of spectra. Curve-fitting must be performed on highly parallelized
computing servers, which could prohibit any further quality checks of the results; (ii) The calculation workload on a large
3D spectrum matrix must be minimized. An organ usually comprises a few different substructures and cell phenotypes:
thus, the clustering of spectra should provide a related number of clusters with relatively homogeneous chemical profiles
(step 3 in Figure 3 in the main text); (iii) It is necessary to compare the raw spectra curve intensities (i.e., the intensity of
absorptions for IR and Raman spectra, and the complete peak-picking intensities in mass and XRF spectra), whichmust
be extracted automatically; (iv) The clustering of the whole set of spectra into highly homogeneous spectra families
enables one to define amathematical model per cluster (step 4 in Figure 3), although this results in a high CPUworkload;
and (v) The mathematical model obtained needs to be applied to all other spectra of its cluster to adjust the intensity,
position, and shape parameters of all absorption bands. This process is highly parallelized on GPU calculation cards.

The production of ‘biological metadata’ from spectral data extracted as discussed above has been demonstrated for
different tissue substructures. For example, such data are required to both identify the chemical profile to highlight the
blood vessels comparedwith all other tissue content and to trace the contiguity of this chemical profile to reconstruct the
solid object formed by the blood vessels in a 3D spectrum matrix. This introduces another degree of complexity in the
analytical strategy (i.e., tracing the skeleton and volume of blood vessels, from thin capillaries to large arteries and veins).
It also offers another opportunity to analyze more deeply the 3D features of the tissue block, thus generating ‘secondary
metadata’. The reconstruction of vessels as 3D solid objects will enable their geometrical parameters to be determined,
such as their diameter, curvature, branching angles, and all other associated dimensions: also ‘secondary metadata’.

Outstanding Questions
Whichspectroscopy techniquesshould
be used for 3D chemical imaging?

What is thenature of expected chemical
data that aids the 3Danalysis of a tissue
block? For elemental imaging, MSI and
XRF imaging must be considered. For
organic contents, MSI, Raman, and IR
imaging will provide different chemical
data.

What is the limit of tissue sectioning for
3D chemical imaging? To reconstruct
small-tissue substructures in 3D, a tis-
sue thickness of 3–5 mm is required.
The issue then is to perform continu-
ous sectioning of the tissue block with-
out losing too many sections, which
would affect the 3D reconstruction.
In practice, this includes a large per-
centage of sections being lost. Thus, a
10-mm thickness is preferred.

What is the digital size of a 3D chemical
image? A 3D spectral image has four
dimensions: x, y, and z for the position
of each voxel, and z’ for the spectral
data (with x’ for wavenumber or m/z or
keV values; y’ for intensity). With sev-
eral KBs per spectrum, a raw 3D spec-
trum matrix from a 1-cm3 tissue block
reaches approximately 10 TBs at a 5-
mm resolution. This is a big-data issue
that high-performance data analytics
(HDPA) servers must solve.

What are the remaining issues for ren-
dering 3D chemical imaging methods
routine in the clinic?

What is a sufficiently high-throughput
microscope? To achieve high reliability
for 3D imaging, the microscopes pro-
ducing spectral images must be able to
not only threshold the S/N as a quality
control tool, but also automateall acqui-
sition andpost-processing procedures.

What is the main way to make 3D
chemical imaging reliable? To define
the applicability of an analytical
method for 3D chemical imaging, a
compromise must be sought between
an appropriate S/N and the resolution.

What is required of HPDA servers? The
combination of storage and/or retrieval
procedures and HPC with high paral-
lelization on GPU cards is current hard-
ware required for HPDA. This is critical
for developing spectromics in 3D
chemical imaging.
according to an analytical strategy defined ab initio. In fact, the huge amount of data extracted
from individual spectra and the heavy computing workload induced by their treatment in a large
3D spectrum matrix to reconstruct and visualize a result in 3D requires first defining the
relevance of this analytical strategy.

In any case, spectromics requires extensive automation of data treatment steps. This is due to
both the huge number of spectra that a 3D spectrummatrix may contain (millions to billions) and
the lack of readability that a 3D spectrum matrix imposes, with voxels (thus spectra) represent-
ing chemical information that cannot be analyzed separately from adjacent voxels for recon-
structing a substructure in 3D (Box 2).

This second generation of metadata derived from a 3D spectrum matrix is comparable to 3D
histological analyses. As soon as the analytical technique provides a quantitative chemical
analysis of tissue contents, the first and second generations of biological metadata can be
subjected to cross-correlations; for example, in cancer research, the density of blood vessels
can be analyzed with respect to the local concentration of metabolic parameters where tumor
cells have been identified by their chemical profile [6]. This combination of chemical, anatomical,
and substructure parameters from the same 3D chemical image of a sample is another unique
analytical feature of spectromicroscopies.

Concluding Remarks
3D chemical imaging by spectromicroscopy could significantly expand our ability to perform
analyses at the submicroscopic level if issues associated with the standardization of data
acquisitions and treatment methods can be addressed (see Outstanding Questions). Several
key features might be also generalized to all spectroscopies, such as the management of
massive data from a high-resolution 3D spectrum matrix, which would require computing
approaches that could be shared between techniques. Therefore, the future of these techni-
ques for 3D histology will result from large networks of scientists working together to create the
required technological chain of 3D chemical imaging. The use of such techniques in the
biomedical and pharmaceutical fields might result from these new developments.
12 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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