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a b s t r a c t

In the study presented here, quantitative detection of ethyl chloride, dichloromethane, and
trichloromethane individually and in mixture has been demonstrated using an external cavity broadly
tunable quantum cascade laser (EC-QCL) based hollow waveguide gas sensor. The EC-QCL has been char-
acterized by coupling into a FT-IR spectrometer documenting sufficient optical power output across a
frequency tuning range from 1297 cm−1 to 1219 cm−1. Concentrations as low as 4 ppb for ethyl chloride,
7 ppm for dichloromethane, and 11 ppb for trichloromethane were detected during exponential dilution
experiments with the EC-QCL precisely tuned to selective absorption frequencies of the Q-branch for each
constituent at 1287.25 cm−1, 1262 cm−1, and 1220 cm−1, respectively.

© 2009 Published by Elsevier B.V.

1. Introduction

Mid-infrared (MIR; 3–20 !m) gas sensors are generally gaining
momentum in trace gas sensing due to their intrinsic molecular
selectivity [1], and specifically since the advent of the quantum cas-
cade laser (QCL) [2] providing beneficial light source attributes such
as compact dimensions, room-temperature operation, and an out-
put power of up to 700 mW [3]. The detection of organic molecules
in the MIR relies on the excitation of fundamental vibrational and
rotational transitions, which provide distinct molecular signatures
at detection limits ranging from the parts-per-million to the parts-
per-trillion range [1,4].

The conventional light source used for mid-infrared spec-
troscopy of trace gases is the Fourier-transform infrared spectrom-
eter (FT-IR); however, to date, power consumption for a portable,
yet still bulky FT-IR can be as high as 140 W whereas miniaturized,
hand-held devices, such as the QCL, typically consume 28 times less
power, only 1.5–5 W [5]. Still, FT-IRs have a significant advantage
over a laser light source due to broadband radiation in which mul-
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tiple analytes can be measured simultaneously. However, widely
tunable QCLs are quickly becoming a viable option for frequency
tunable, hand-held, sensitive and selective trace gas sensors.

Until recently, QCLs have been limited in their tuning range
across molecular absorption features to approximately 3–4 cm−1 by
adjusting the injection current, or up to approximately 20 cm−1 by
controlling the temperature of the laser chip [6]; however, a wider
laser tuning range is desirable for the simultaneous detection of
multiple analytes, as encountered in many real-world gas sensing
applications.

External cavity tunable quantum cascade lasers (EC-QCL) [7–11]
offer a different approach to conventional QCL wavelength tuning
yielding a significantly broader tuning range exceeding 100 cm−1

[12]. Here, wavelength tuning provided by coupling radiation emit-
ted from the QCL to a grating usually in a first order direct
feedback configuration, or a Littman-Metcalf configuration [4].
Consequently, adjusting the angle of the grating results in shift-
ing the location of the resonant peak, thereby enabling to precisely
overlap the QCL emission with the maximum of selective analyte
absorption features in a broad spectral window for sensitive and
selective molecular detection in the gas phase.

To date, EC-QCLs have been tested in a variety of sensing
systems providing in part detection limits at the sub-ppb con-
centration level [13]. Pushkarsky et al. have used EC-QCLs and
photoacoustic spectroscopy (PAS) to demonstrate the detection of
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2,4,6-trinitrotoluene (TNT) at approximately 0.1 ppb, and acety-
lene at approximately 2.5 ppb (1!) [14]. Phillip et al. have used
an EC-QCL quartz-enhanced PAS (QEPAS) system utilizing a quartz
tuning fork as the transducer to determine the absorption spec-
tra of two gases, pentafluoroethane and 1,1,1,2-tetrafluoroethane,
which were in excellent agreement with reference spectra [15].
Likewise, Lewicki et al. have shown trace-gas detection of pentaflu-
oroethane at 3 ppb (1!), and acetone at approximately 520 ppb (1!)
using EC-QCL QEPAS. Both analytes were also quantitatively deter-
mined within a custom gas mixture at concentrations of 47.2 ppm
for acetone and 4.4 ppm for pentafluoroethane [12].

This work reports a multianalyte sensing capability with a pos-
sibly smaller form factor and minute quantity of analyte used.
To achieve this, a mid-infrared (MIR) absorption spectroscopy gas
phase chemical sensing system with a state-of-the-arts broadly
tunable external cavity quantum cascade laser (EC-QCL) and hol-
low core waveguide (HWG) [16] was used. The HWG simultaneously
serves as a waveguide for MIR radiation as well as a miniaturized
gas cell [17] with an internal volume on the order of a few milliliters
[18]. Additionally, HWGs permit fast response times on the order of
a few seconds and yield detection limits in the low ppm to low ppb
concentration range [18–22] making these trace gas sensors ideal
candidates for applications such as human breath diagnostics.

In the present study, the first EC-QCL based HWG gas sensor was
demonstrated for the quantitative detection of individual molecules
at trace levels, as well as for the discrimination of structurally
related constituents within gas mixtures. A tuning range of ∼80
wavenumbers was achieved, effectively providing functionality of
a “miniaturized spectrometer” with wide tunability on a compact
platform.

2. Experimental

The pulsed QCL was characterized using an Au coated off-
axis parabolic mirror (OAPM) to focus the emitted radiation
into the external port of a Bruker IFS 66 (Bruker Optics, Inc.,
Billerica, MA) Fourier transform infrared (FT-IR) spectrome-
ter utilizing a liquid-nitrogen–cooled mercury–cadmium-telluride
(MCT) detector (detector element: 1 mm × 1 mm, detectivity:
D* = 3 × 1010 cm Hz1/2 W−1, model: FTIR-16-1.0, InfraRed Asso-
ciates, Inc., Stuart, FL). The laser was external cavity tuned across
a range of 1297–1219 cm−1 at a spectral resolution of 1 cm−1,
and spectra were collected averaging 10 scans per measurement
at a spectral resolution of 0.25 cm−1 across a spectral range of
4000–400 cm−1 using the Blackman–Harris 3-term apodization
function [23]. In a separate measurement, the laser was refocused
directly onto the same MCT detector to determine the output volt-
age evaluated with an oscilloscope (TDS3032, Tektronix, Beverton,
OR).

A schematic of the experimental sensing setup including
exponential dilution is described in Fig. 1. Radiation from the EC-
QCL (relative temperature: 0 ◦C, pulse width: 0.50 !s, frequency:
100.0 kHz, duty cycle: 5%, current: 1500 mA, Daylight Solutions, Inc.,
Poway, CA) was focused into at custom-made hollow waveguide
gas cell using two OAPMs. The hollow waveguide is a structural
silica tube internally coated with an IR-reflective Ag/AgI layer.
After absorption, radiation was then focused onto a liquid-nitrogen
cooled MCT detector. A reference beam was generated by using a
beamsplitter prior to focusing radiation into the hollow waveguide,
and via an additional MCT detector, thereby allowing for signal nor-
malization compensating for e.g., fluctuations in optical power as a
function of frequency.

Gas samples were prepared by exponential dilution, and directly
introduced into the EC-QCL HWG gas sensor, as previously demon-
strated [18]. Nitrogen was used as inert carrier gas at flow rates in

Fig. 1. Schematic of the experimental setup using exponential dilution.

the range of 8–42 mL/min depending on the tested analyte, how-
ever, remained constant throughout an individual measurement.

For the determination of multivariate calibration samples, gas
mixtures were prepared in sealed volumetric flasks, and injected
into the hollow waveguide via needle valves available at the custom
gas cells sealing off the HWG at both ends. While tuning the EC-QCL
across its frequency range, molecularly selective damping of the
laser radiation was determined as a function of decrease in voltage
using an oscilloscope at a spectral resolution of 1 cm−1.

3. Results and discussion

Fig. 2A shows the characterization of the EC-QCL emission with
optical output power as a function of the emission frequency. As
expected, the optical power decreases with increasing deviation
from the native central emission frequency of the laser (1258 cm−1).
The deviation between the selected laser emission frequency and
the measured emission frequency was determined to be below
±0.5 cm−1 of the selected EC-QCL emission frequency, as described
in Fig. 2B. Fig. 2C depicts the correlation between expected and
actual EC-QCL emission frequency. These performance parameters
are essential for trace-gas sensing applications, as absorption lines
may exhibit comparatively narrow bandwidths, thereby demand-
ing precise overlap of the QCL emission frequency for ensuring
maximized sensitivity and selectivity.

Univariate calibration of the gas sensing system was performed
using exponential dilution, which is a commonly accepted method
for preparing trace-level sample dilutions e.g., for calibrating gas
chromatographs [24]. Using this procedure, the limit of detec-
tion for three individual analytes was determined at 1287.25 cm−1

(ethyl chloride), 1262 cm−1 (dichloromethane), and 1220 cm−1

(trichloromethane), respectively.
Exponential dilution theory enables that at any given point of

time the instantaneous concentration of analyte can be calculated
if the initial concentration, the volume of the dilution flask, and
flow rate of carrier gas are known as follows:

C = C0e−at,

where C is the calculated instantaneous concentration of the ana-
lyte, C0 is the initial concentration of the analyte, ˛ is flow rate of
the carrier gas divided by the volume of the dilution flask, and t is
the time at which the concentration is calculated during exponen-
tial dilution [24]. Practically, a known amount of analyte is injected
into the exponential dilution flask [25], while a stir bar constantly
and continuously mixes and dilutes the analyte gas with the carrier
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Fig. 2. FT-IR characterization of EC-QCL emission: (A) raw data FT-IR spectra over a range of wavenumbers. (B) Calculated deviation of set wavenumber from measured
wavenumber. (C) Correlation between measured emission versus expected emission.

Fig. 3. Exponential dilution of ethyl chloride, dichloromethane, and trichloromethane. The red line indicates the noise level derived as noise average + 3!. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of the article.)

gas at a constant flow rate. The limit of detection for this sensing sys-
tem was derived from the smallest detectable analyte concentration
using exponential dilution theory, which could be discriminated
against the background noise level.

Typical results for such exponential dilution experiments indi-
cating the recovery of the background signal, as the analyte is
increasingly diluted within the HWG gas cell are given in Fig. 3.
For experiments at individual gases, the EC-QCL was tuned to the
center Q-branch of the CH2 wagging mode for each analyte. Effi-
cient overlap of the laser emission with the appropriate analyte
absorption yielded limits of detection (according to the 3! criteria)
at 4 ± 3 ppb for ethyl chloride, 7 ± 6 ppm for dichloromethane, and
11 ± 15 ppb for trichloromethane, respectively.

Fig. 4 shows an exemplary spectrum of a mixture containing
the three analytes, as recorded with the EC-QCL HWG gas sensor
at a spectral resolution of 1 cm−1. As any changes of the hollow

Fig. 4. Spectrum of all three analytes within a gas mixture recorded with EC-QCL
HWG gas sensor.

waveguide response function and fluctuations in optical power are
taken into account during absorption experiments, distinct and
selective vibrational features of all three analyte are discriminated
within the wavelength tuning range of a single EC-QCL.

Quantitative multivariate data analysis of gas mixtures was
demonstrated by using a partial least squares model, which was
built on a limited data set of manually prepared gas standards pre-
pared by an experimental design approach for deliberately varying
the concentrations per calibration sample while avoiding collinear-
ity. The trainings set consisted of 11 calibration samples, each

Fig. 5. PLS model validation for predicting the concentration of dichloromethane in
mixture. The blue circles denote standards used to build the model. The red circle
represents the standard left out as quasi unknown and the predicted value based on
the established model. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the article.)



Author's personal copy

C. Young et al. / Sensors and Actuators B 140 (2009) 24–28 27

comprising all three analytes present within concentrations ranges:
ethyl chloride 2000–9000 ppm, dichloromethane 30–70 ppm, and
trichloromethane 40–100 ppm. The multivariate calibration model
was built using PLS toolbox (Eigenvector Research, Inc., Wenatchee,
WA). The prediction capability of the model was tested using cross-
validation with each calibration sample randomly left out once
and treated as quasi-unknown, after the model was generated
using autoscaling for data preprocessing and selecting seven latent
variables. The results are shown in Fig. 5; the validation of the
model resulted in a coefficient of determination of 0.977, and a
root mean square error of calibration of 1.294 for predicting the
dichloromethane concentration within such gas mixtures charac-
terized by considerable peak overlap between the constituents. It is
expected that the robustness of the PLS model will further improve
by substantially expanding the calibration data set using automated
gas mixing routines.

4. Conclusions

Sensitive and selective trace gas detection of three analytes ethyl
chloride, dichloromethane, and trichloromethane were demon-
strated using an external cavity tunable quantum cascade laser
hollow waveguide gas sensor tuned to the maximum absorption
feature of each analyte. Gas mixtures were analyzed via a partial
least squares model using the hollow waveguide as a miniaturized
gas cell and tuning the EC-QCL across the frequency range from
1297 cm−1 to 1219 cm−1 at a spectral resolution of 1 cm−1. As the
development of QCL chips toward longer wavelengths progresses, it
is anticipated that a wide range of relevant gaseous analytes could
be determined with such compact gas sensing systems.
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