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An infrared laser absorption sensor was developed for gas temperature and carbon 
oxide (CO, CO2) concentrations in high-enthalpy, hydrocarbon combustion flows. This 
diagnostic enables non-intrusive, in situ measurements in harsh environments produced by 
propulsion ground test facilities, utilizing tunable quantum cascade lasers capable of 
probing the fundamental mid-infrared absorption bands of CO and CO2 in the 4 to 5 µm 
wavelength domain.  A scanned-wavelength direct absorption technique was employed with 
two lasers, one dedicated to each species, free-space fiber-coupled using a bifurcated hollow-
core fiber for remote light delivery on a single line of sight. The sensor was calibrated in a 
heated static cell, and field measurements were conducted in July, 2013 at the University of 
Virginia’s direct-connect scramjet combustor for ethylene-air combustion.  Measured 
quantities of carbon monoxide and carbon dioxide provide a basis for evaluating combustion 
completion or efficiency with temporal and spatial resolution in practical hydrocarbon-
fueled engines. 

 
 

Nomenclature 
 

Io  = incident spectral intensity [W/cm2s-1] 
It  = transmitted spectral intensity  [W/cm2s-1] 
ν = optical frequency [cm-1]  
α =  absorbance 
L = path-length [cm] 
S = line-strength [cm-2/atm] 
E” =  lower-state energy [cm-1] 
v” =  lower-state vibrational quantum number 
J”  =   lower-state rotational quantum number 
T = temperature [K] 
P = total pressure [atm] 
φν = line-shape function 
χ =  gas mole fraction vector 
xabs =  mole fraction of the absorbing species 
A =  integrated absorbance 
φ   =   C2H4-air equivalence ratio 
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