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ABSTRACT 
 

A unique tunable polarimetric scatterometry system has been developed by upgrading a Schmitt Measurement 
Systems Complete Angle Scatter Instrument (CASI) to produce a Dual-Rotating-Retarder full-Mueller-matrix 
polarimeter. The system has been enhanced by automation, addition of multiple, tunable, laser light sources, an 
improved sample positioning and orientation interface, and enhanced data-analysis software. A primary application of 
this system is the characterization of novel nano- and micro-structured materials, such as photonic crystals, plasmonic 
structures and optical meta-materials, which often display very narrow-band performance. The ability to characterize 
these materials both at and away-from their resonances is a clear advantage.  The specific project goals are to 
demonstrate (1) a novel nano- and micro-structured-material-characterization full-polarimetric-diffuse-ellipsometry 
technique suitable to measure desired material properties with stated uncertainty limits for novel optical material 
structures of interest, and (2) the incorporation of predictive computational codes that estimate the electro-magnetic 
property values for novel nano- and micro-structured-material designs and concepts of interest. 
 
Keywords: Polarimetric scatterometry, MWIR, LWIR, metamaterial, plasmonics, photonic crystals, Dual-Rotating-
Retarder polarimeter, diffuse ellipsometry 
 

1. INTRODUCTION 
1.1 Background 
 
Nano-scale-structured materials with sub-wavelength features can have enhanced or novel spectrally dependent values 
for infrared permeability and permittivity.  Optimized nano-scale features cause wavelength dependent absorption, 
scatter, and overall extinction features not present in the bulk material.  Such structures are often referred to as 
metamaterials, but may also include other plasmonic structures or photonic crystals.  The application space of engineered 
metamaterials includes sub-wavelength waveguides and antennas, true time delay devices, optical and infrared filters, 
and plasmonic-enabled electronic-optical interfaces.1 
  
1.2 Motivation 
 
This paper presents the development of a novel infrared (IR) metamaterial characterization technique for measuring and 
analyzing full-angle full-polarimetric scatter (i.e. both transmittance and reflectance distribution) from metamaterials of 
interest.  The technique expands the domain of Mueller-matrix ellipsometry.  Current commercial Mueller-matrix 
ellipsometers, such as IR-VASE by Woollam, only operate at the specular reflection angle.  The approach presented here 
is an evolutionary continuation of the in-specular-plane-but-not-at-the-specular-angle and out-of-specular-plane work by 
Germer et al. at NIST and others.2-5 The research presented here extends the current state-of-the-art characterization 
technique to novel IR metamaterials.  Appropriate numerical scatter models are incorporated for the as-built mid-wave 
IR (MWIR, ~3-6.5 μm) or long-wave IR (LWIR, ~7.4-12 μm) metamaterial architecture, to include the effects of nano-
scale geometry and fabrication defects.  The goal is to bridge the gap between metamaterial design performance and 
metamaterial “as-built” performance.  
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Figure 4.  QCL source from Daylight Solutions shown beside AFIT DRR laser source box. 

 
 

 
Figure 5. Spectral range coverage and average power emission for each of the six Daylight 
Solutions QCL sources.10 

 
 
2.4 Description of the data analysis implementation 
 
The measurement planning, measurement analysis, and data presentation tools are coded in Python 2.6.  Python is an 
open-source object oriented scripting language that is scientifically extensible through external open-source add-ins like 
Scipy, Numpy WXpython, and Matplotlib.  The Numpy and Scipy packages provide robust matrix algebra capability for 
complex numbers and methods, numeric matrix inversion, and parameter optimization through cost function 
minimization.  Matplotlib is a native Python professional quality plotting and graphing package with MATLAB™-like 
syntax.  WXPython provides a graphical user interface to facilitate use of the data planning, collection, and data analysis. 
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3. THEORY 

 
3.1 Condition number theory 
 
The condition number DRR instrument analysis approach by Smith was applied to define the AFIT DRR instrument 
operating mode.9  In the Mueller algebra, the off-specular-plane DRR instrument measurement can be described by 
 

 ( ) ( ) ( ) ( )1000 , , , , , , , , T
a a a a M M M s g g g gI M x y z Sθ δ θ φ α θ δ= Π Δ Ω Δ Π  (1) 

 
where I is the measured intensity or Stokes 0S  parameter of the output polarization state (mathematically selected by 

(1 0 0 0 )), Π  is the Mueller matrix for a polarizer, Δ  is the Mueller matrix for a wave-plate at angle, θ , to the 
polarization axis with δ  phase retardation, subscripts, a and g, refer to analyzer and generator elements, respectively, M 
is the Mueller matrix for the sample of interest with orientation (θM, φM, αM, x, y, z) in the target reference frame. Mθ  is 

the relative angle of rotation of the sample in the beam plane. Mφ  is the out-of-plane rotation angle of the sample. (αM, 
x, y, z) are the target orientation angle and absolute position necessary to define the orientation and location of a 
particular sample to be measured. sΩ  is the solid angle of scattered radiation.  S is the Stokes vector of the input light.  
Equation 1 can be recast into the so-called W-Matrix form11 
  
  ( , , , )a a g gI W Mθ δ δ θ=  (2) 
 
where W is an [N x16] matrix that fully describes the instrument configuration for any desired generator-
retarder/analyzer retarder combination.  N is the number of independent measurements (typically 16 or more) necessary 
to return a full Mueller matrix.  The W-matrix may then be inverted to deliver the Mueller matrix of the sample, M: 
 

 ( ) 1T TM W W W I
−

=  (2) 

 
Smith’s condition number approach to W-Matrix analysis allows determination of both N and suitable angle-increment 
pairs for rotation of the linear retarders.  From an analysis of the entire space of possible angle pairs, Smith showed that 
34o and 26o increments for the generator and analyzer retarders, respectively, are optimal for pseudo-inversion of the W-
matrix.9  At present, we are using this angular combination in the AFIT DRR. 
 
A W-Matrix analysis does not include effects of instrument scatter or optical component misalignment.  These are areas 
of active research and discussion for our team.  Applying the Compain DRR instrument characterization and error 
correction technique helps correct for systematic alignment errors in the instrument.12 Finally, the spectrometric Mueller 
measurement technique described by Chenault has been applied to determine diattenuation and retardance values for all 
of the polarization components.13 
 
3.2 The DDSCAT and Lumerical models 
 
The modeling methods used for this research are Discrete Dipole Approximation (DDA) and Finite Difference Time 
Domain (FDTD).  The DDA was developed by Purcell and implemented by Draine as DDSCAT.14,15  DDSCAT uses a 
hybrid finite-element/coupled dipole method (FE/CDM) approach.  The DDA finite elements are point polarized dipoles 
on a cubic lattice.  The geometry and material-dependent spectral scatter and absorption coefficients are calculated.16  
DDSCAT has successfully determined localized nano-scale modes that support surface plasmon resonance for nano-
particle bio- and chem-sensor development and interstellar spectroscopy of microscopic graphite.  This capability makes 
it appealing for the spectrometric research proposed here.  DDSCAT also has a proven record in optical metamaterial 
design and analysis. 17-29  Published DDSCAT results demonstrate much higher localized field strengths due to near-field 
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polarization information is lost.  Both of these canonical Mueller matrices are useful for system performance description.  
Figure 9 shows AFIT DRR measurement results for “Transmissive No Sample” and Spectralon®.  Both results are in 
good agreement with the canonical forms. 
 

 
Figure 8.  (left) Mueller Identity operation – no change in Stokes state.  (right) Mueller 
depolarizer – complete loss of Stokes state. 

 

 
Figure 9.  AFIT DRR measurement results for (left) “No Sample” or Mueller Identity 
operation and (right) Spectralon® diffuse reflector or Mueller depolarizer. 

 
4.2 Mueller distance error metric 
 
The AFIT CASI-DRR instrument was initially assembled in March 2010 and is still going through characterization trials 
and optical alignment in order to optimize the performance of the instrument.  A strong DRR Mueller calculus model has 
been developed in the Python language to facilitate modeling a measurement and to compare the measurement to the 
ideal.  The residual difference between the measurement and ideal states the sensitivity of the instrument.  The residual is 
given by  
 

 
Ideal

MeasIdeal

I
II −

=ε  (3) 

 
where I is intensity as given in equations (1) and (2).  The Mueller distance between Mueller matrices, 1M and 2M , is a 
useful tool for measurement comparison to model.  The Mueller difference is given by  
 

 
, ,

4,4
2

1 2
,

1,2

( )

16

i j i j
i j

M M
ε

−
=

∑
 (4) 

 
Our typical Mueller distance between current measurement result and the desired identity matrix resulting from 
measuring the no-sample or “blank” case is 0.064+0.002.11  For comparison, the calculated Mueller distance for the 
NIST team led by Germer is 0.0006.2  We are working to improve our measurement sensitivity and decrease our error 
metric. 
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effect.)  Figure 12 shows that a full polarimetric scatter measurement is a useful tool to develop an understanding of the 
nature of the scatter dependencies for the silver nanocubes.  But, it is also clear that probing the silver nanocubes with a 
spectrally varying input source is necessary in order to probe the desired surface plasmon order.  
 

 
Figure 12.  AFIT DRR transmission measurements for (left) nanocubes on ITO-coated glass 
substrate and (right) an ITO-coated glass substrate. 

 
4.4 Polarimetric Infragold® measurements at 3.39 μm 
 
We completed initial polarimetric Infragold® characterization at 3.39 μm using the AFIT DRR instrument.  Infragold®  
is a diffuse infrared reflectance coating manufactured by Labsphere.  It serves an equivalent role in the infrared region as 
its counterpart, Spectralon ®, does in the visible.  I.e. it provides a highly Lambertian reflectance standard for 
comparative measurements.  However, there are some pedagogical differences between Infragold® and Spectralon® that 
non-polarimetric measurements cannot distinguish.  Infragold® is a surface scatterer and is dependent on surface micro-
roughness for its Lambertian nature.  As a consequence, Infragold® retains most polarization state information upon 
reflection.  On the other hand, Spectralon® is a pressed powder and a volume or bulk scatterer.  Visible light energy 
enters the medium and all polarization information is lost during multi-bounce volumetric interaction.  The AFIT DRR 
maintains polarization state information and the diffusely scattering Infragold® is polarimetrically distinguishable from 
the diffusely scattering Spectralon®.  Figure 13 compares AFIT DRR measurements for Infragold at 20o incident angle 
(right) and the results of a micro-facet reflectance model (left).36  Infragold® has a Mueller Identity matrix nature 
whereas Spectralon® has a Mueller depolarizing nature.  We are investigating the artifact in the M23 measurement of 
Infragold® that is not replicated in our model.  We believe it is due to preferential-polarization scattering in our 
instrument. 
 

5. CONCLUSION 
 
We have completed initial development of a full-scatter Dual-Rotating-Retarder ellipsometer suitable for novel 
metamaterial characterization throughout the MWIR and LWIR.  The technique is well suited to capture radiation 
uniquely scattered by these structures with stated uncertainty limits.  The incorporation of predictive computational 
codes allows us to better analyze measured results and understand the electro-magnetic properties of these materials.  We 
are anxious to apply our resources and instruments to targets of interest to the community. 
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Figure 13.  (left) Measured Infragold® Mueller-matrix BRDF for 20o incidence angle at 3.39 
μm.  (right) Calculated microfacet model Mueller-matrix BRDF for a rough gold surface. 

 
REFERENCES 

 
[1] Ozbay, E. , "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311(5758), 189-193 

(2006).  
[2] Germer, T. A. and Asmail, C. C. , "Goniometric optical scatter instrument for out-of-plane ellipsometry 

measurements," Rev.Sci.Instrum. 70, 3688 (1999).  
[3] Germer, T. A. and Fasolka, M. J., "Characterizing surface roughness of thin films by polarized light scattering," 

Proceedings of SPIE, 264-275 (2003).  
[4] Fitzgerald, T. M. and Marciniak, M. A., "Full Optical Scatter Analysis for Novel Photonic and Infrared 

Metamaterials," Proceedings of the 13th International Congress and Exposition on Experimental and Applied 
Mechanics 2010, Curran Associates, Inc. (2010).  

[5] Fitzgerald, T. M. and Marciniak, M. A., "Full Scatter Characterization of Novel Photonic and Infrared 
Metamaterials," “Electromagnetic meta-materials,” Proceedings of the International Symposium, “Electromagnetic 
meta-materials” of the Forum on New Materials, part of CIMTEC 2010 - 12th International Ceramics Congress and 
5th Forum on New Materials (2010). 

[6] Smith, D. R., Schultz, S., Markoš, P. and Soukoulis, C. M. , "Determination of effective permittivity and permeability 
of metamaterials from reflection and transmission coefficients," Physical Review B 65(19), 195104 (2002).  

[7] Azzam, R. M. A. and Bashara, N. M., [Ellipsometry and Polarized Light], North-Holland (1977).  
[8] Goldstein, D. H. and Chipman, R. A. , "Error analysis of a Mueller matrix polarimeter," Journal of the Optical 

Society of America A 7(4), 693-700 (1990).  
[9] Smith, M. H. , "Optimization of a dual-rotating-retarder Mueller matrix polarimeter," Appl.Opt. 41, 2488-2493 

(2002).  
[10] Technical Staff, D. S. (2010).  
[11] Chipman, R. A. , "Handbook of Optics, vol. II, ch. 22," Optical Society of America, (2000).  
[12] Compain, E., Poirier, S. and Drevillon, B. , "General and self-consistent method for the calibration of polarization 

modulators, polarimeters, and Mueller-matrix ellipsometers," Appl.Opt. 38, 3490-3502 (1999).  
[13] Chenault, D. B. and Chipman, R. A. , "Measurements of linear diattenuation and linear retardance spectra with a 

rotating sample spectropolarimeter," Appl.Opt. 32(19), 3513-3519 (1993).  
[14] Draine, B. T., "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys.J. 

333 (Part 1), (1988).  
[15] Draine, B. T. and Flatau, P. J. , "Discrete-dipole approximation for scattering calculations," JOURNAL-OPTICAL 

SOCIETY OF AMERICA A 11, 1491-1491 (1994).  
[16] Draine, B. T. and Flatau, P., "User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0," eprint arXiv: 

0809.0337 (2008).  
[17] Noguez, C. , "Surface plasmons on metal nanoparticles: the influence of shape and physical environment," 

J.Phys.Chem.C 111, 3806-3819 (2007).  

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

7792 - 8 V. 4 (p.10 of 11) / Color: No / Format: Letter / Date: 2010-07-26 08:01:28 AM

SPIE USE: ____ DB Check, ____ Prod Check, Notes:



 

 

[18] Noguez, C., Roman-Velazquez, C. E., Esquivel-Sirvent, R. and Villarreal, C. , "High-multipolar effects on the 
Casimir force: The non-retarded limit," Europhys.Lett. 67(2), 191-197 (2004).  

[19] Noguez, C., Sosa, I. O., Barrera, R. G. and DF, M., "Light Scattering by Isolated Nanoparticles With Arbitrary 
Shapes," MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, 275-280 (2001).  

[20] Sosa, I. O., Noguez, C. and Barrera, R. G. , "Optical Properties of Metal Nanoparticles with Arbitrary Shapes," J 
Phys Chem B 107(26), 6269-6275 (2003).  

[21] Cho, D., Wang, F., Zhang, X. and Shen, Y. R., "Contribution of electric quadrupole resonance in optical 
metamaterials," American Physical Society, 2008 APS March Meeting, March 10-14, 2008, abstract# D35. 012 
(2008).  

[22] Cai, W., Chettiar, U. K., Kildishev, A. V. and Shalaev, V. M., "Optical Cloaking with Non-Magnetic 
Metamaterials," Arxiv preprint physics/0611242 (2006).  

[23] Cai, W., Chettiar, U. K., Kildishev, A. V. and Shalaev, V. M. , "Optical cloaking with metamaterials," Nature 
Photonics 1, 224–226 (2007).  

[24] Chettiar, U. K., Kildishev, A. V., Yuan, H. K., Cai, W., Xiao, S., Drachev, V. P. and Shalaev, V. M., "Dual-Band 
Negative Index Metamaterial: Double-Negative at 813 nm and Single-Negative at 772 nm," (2008).  

[25] Hicks, E. M., Lyandres, O., Hall, W. P., Zou, S., Glucksberg, M. R. and Van Duyne, R. P. , "Plasmonic Properties 
of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography," Journal of physical 
chemistry.C 111(11), 4116-4124 (2007).  

[26] Penttilä, A., Zubko, E., Lumme, K., Muinonen, K., Yurkin, M. A., Draine, B., Rahola, J., Hoekstra, A. G. and 
Shkuratov, Y. , "Comparison between discrete dipole implementations and exact techniques," Journal of Quantitative 
Spectroscopy and Radiative Transfer 106(1-3), 417-436 (2007).  

[27] Diana, F. S., David, A., Meinel, I., Sharma, R., Weisbuch, C., Nakamura, S. and Petroff, P. M. , "Photonic crystal-
assisted light extraction from a colloidal quantum Dot/GaN hybrid structure," Nano Letters 6(6), 1116-1120 (2006).  

[28] Sherry, L. J., Jin, R., Mirkin, C. A., Schatz, G. C. and Van Duyne, R. P. , "Localized surface plasmon resonance 
spectroscopy of single silver triangular nanoprisms," Nano Lett 6(9), 2061 (2006).  

[29] Sherry, L. J., Chang, S. H., Schatz, G. C., Van Duyne, R. P., Wiley, B. J. and Xia, Y. , "Localized surface plasmon 
resonance spectroscopy of single silver nanocubes," Nano Lett 5(10), 2034–2038 (2005).  

[30] Byun, K., Kim, S. and Kim, D. , "Design study of highly sensitive nanowire-enhanced surface plasmon resonance 
biosensors using rigorous coupled wave analysis," Optics Express 13(10), 3737-3742 (2005).  

[31] Lu, J., Petre, C., Yablonovitch, E. and Conway, J. , "Numerical optimization of a grating coupler for the efficient 
excitation of surface plasmons at an Ag-SiO_2 interface," Journal of the Optical Society of America B 24(9), 2268-
2272 (2007).  

[32] Moharam, M. G. and Gaylord, T. K., [Rigorous Coupled-Wave Analysis of Planar-Grating Diffraction], OSA 
(1980).  

[33] Spiegel, J., de la Torre, J., Darques, M., Piraux, L. and Huynen, I. , "Permittivity Model for Ferromagnetic 
Nanowired Substrates," IEEE Microwave and Wireless Components Letters 17(7), 492 (2007).  

[34] Kokhanovsky, A. A., [Polarization Optics of Random Media], Springer Verlag (2003).  
[35] Mahmoud, M. A., Tabor, C. E. and El-Sayed, M. A. , "Surface-Enhanced Raman Scattering Enhancement by 

Aggregated Silver Nanocube Monolayers Assembled by the Langmuir-Blodgett Technique at Different Surface 
Pressures," J.Phys.Chem.C 113, 5493 (2009).  

[36] Priest, R. G. and Germer, T. A. , "Polarimetric BRDF in the microfacet model: Theory and measurements," TR, 
Naval Research Laboratory, Washington DC (2000).  

 

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

7792 - 8 V. 4 (p.11 of 11) / Color: No / Format: Letter / Date: 2010-07-26 08:01:28 AM

SPIE USE: ____ DB Check, ____ Prod Check, Notes:


