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ABSTRACT: Fourier transform infrared (FT-IR) microscopy coupled with
machine learning approaches has been demonstrated to be a powerful
technique for identifying abnormalities in human tissue. The ability to
objectively identify the prediseased state and diagnose cancer with high levels
of accuracy has the potential to revolutionize current histopathological
practice. Despite recent technological advances in FT-IR microscopy, sample
throughput and speed of acquisition are key barriers to clinical translation.
Wide-field quantum cascade laser (QCL) infrared imaging systems with large
focal plane array detectors utilizing discrete frequency imaging have
demonstrated that large tissue microarrays (TMA) can be imaged in a
matter of minutes. However, this ground breaking technology is still in its
infancy, and its applicability for routine disease diagnosis is, as yet, unproven.
In light of this, we report on a large study utilizing a breast cancer TMA
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comprised of 207 different patients. We show that by using QCL imaging with continuous spectra acquired between 912 and
1800 cm™, we can accurately differentiate between 4 different histological classes. We demonstrate that we can discriminate
between malignant and nonmalignant stroma spectra with high sensitivity (93.56%) and specificity (85.64%) for an independent
test set. Finally, we classify each core in the TMA and achieve high diagnostic accuracy on a patient basis with 100% sensitivity
and 86.67% specificity. The absence of false negatives reported here opens up the possibility of utilizing high throughput
chemical imaging for cancer screening, thereby reducing pathologist workload and improving patient care.

H istopathology, the study of diseased or prediseased tissue,
is currently the gold standard in studying the
manifestation of disease. Utilizing exogenous stains to highlight
tissue architecture and morphology' enables visualization of
cellular reorganization indicative of disease. However, manual
inspection of stained tissue biopsies is a laborious process, and
there can be significant delays between acquiring a biopsy and a
clinical diagnosis being made. Furthermore, variations in
pathologist experience, training, and working practices makes
for a subjective diagnosis, which is prone to intra- and
interobserver error.” Increased throughput and the desire for
nonsubjective diagnosis are clear drivers for automated
histopathology. However, despite some recent advances in
digital pathology such as computer aided diagnosis (CAD),’
manual inspection of stained tissue sections remains standard
practice in clinics worldwide.

The pursuit of automated disease diagnosis has led to the
emergence of infrared chemical imaging as a leading candidate
with the promise of complementing current histopathological
practice. Relying on biochemical information rather than
changes in tissue architecture and morphology, chemical
imaging enables tissue to be interrogated in a nondestructive
and label-free manner. Numerous examples exist in the
literature demonstrating its effectiveness in discriminating
between normal and cancerous tissue with high levels of
sensitivity and specificity.” ' Despite this, the technology
remains firmly rooted in the research laboratory rather than as
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an effective diagnostic tool in the clinic. The problem therein
lies with infrared chemical imaging being inherently a low
throughput technique. Fourier transform infrared (FTIR)
microscopy utilizing a focal plane array (FPA) detector is
currently the state-of-the-art in infrared chemical imaging.
Exploiting the multiplex advantage of an FPA enables the rapid
acquisition of tens of thousands of spectra simultaneously with
each spectrum consisting of hundreds of data points. However,
a typical tissue microarray often consisting of tens of millions of
spectra can take days to acquire and occupy hundreds of
gigabytes of storage space.

In principle, increased throughput can be achieved using
lower magnification optics such as a 4X magnification objective,
enabling a 2.4 X 2.4 mm field of view and a corresponding pixel
size of 19 pm. Utilizing this approach for imaging large areas
of laryngeal carcinoma, Beleites'' demonstrated that acquisition
times could be reduced by an order of magnitude compared to
using a standard 15X objective. However, this approach
increases pixel contamination at cell boundaries,'” and there
is also the risk of missing vital diagnostic information. Bassan
previously demonstrated'”'* that large areas of tissue could be

imaged with higher throughput by modifying the acquisition
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protocol to maximize the duty cycle and reduce dead time.
However, ultimately, the trade-off between spatial resolution
and throughput means that, at present, chemical images with
acceptable spatial resolution are extremely difficult to acquire
with an FTIR instrument on a clinically relevant time scale.

Increasing demand for high throughput chemical imaging has
led to a renewed interest in discrete frequency infrared
spectroscopy. Targeting key frequencies instead of acquiring
continuous spectra has the potential to dramatically increase
throughput. Studies have shown'>~'7 that high classification
accuracy can be achieved on tissue using a relatively small
number of spectral biomarkers. Several potential technologies
have been proposed for discrete frequency imaging, from
narrowband infrared filters'® and optical parametric oscilla-
tors'” to super continuum light sources.”” Arguably the most
promising contender to date is discrete frequency imaging
utilizing a tunable, high brightness external cavity infrared
quantum cascade laser (QCL). Exploiting the high brightness
of a QCL source” enables the optical system to be coupled to
an uncooled large area microbolometer, thereby allowing large
areas of tissue to be imaged with a single measurement.
Recently, Bassan’” demonstrated that an infrared chemical
image of an entire TMA consisting of 19 million pixels could be
acquired using a single wavelength in just 9 min.

While the increased throughput achievable using discrete
frequency imaging is impressive, the majority of studies to date
have focused on speed and image quality rather than diagnostic
ability.”” In a limited study, we previously utilized QCL-based
discrete frequency imaging for discriminating between normal
and malignant prostate epithelium.** Utilizing just 25 discrete
frequencies enabled 94.60% sensitivity and 93.39% specificity to
be achieved on a validation set consisting of 15 patients.
However, assessing classifier performance on an independent
test set resulted in poorer accuracy (sensitivity 72.14%,
specificity 80.23%). Interpatient variability due to using a
limited number of training patients is likely to have contributed
to the reduced accuracy, but other confounding factors cannot
be ruled out.

At the present time, there are several important questions
which need to be answered before QCL imaging will be
accepted by the biomedical community. One key issue which is
yet to be fully explored is the impact of using a coherent source
on spectral quality and classification accuracy. Spectra acquired
using FTIR microscopes have noise characteristics which are
well-understood and signal-to-noise levels which are unparal-
leled. In contrast, spectra acquired using a QCL imaging
instrument coupled to an FPA have poorer signal-to-noise
ratios and often exhibit fringes due to interference between the
sample and coherent light.”**> While it is possible to mitigate
coherence effects using single point acquisition,”*” this
necessarily reduces throughput and negates many of the
advantages of QCL imaging. Second, diagnostic accuracy using
continuous frequency spectra is yet to be explored, and this is
an important preliminary step in assessing this new technology
which is still in its infancy. Poor classification accuracy on
continuous frequency chemical images would cast doubt on the
future application of discrete frequency imaging for disease
diagnosis.

To the best of our knowledge, no large scale studies have
been performed investigating classification accuracy for a QCL
system coupled to an FPA. In light of this, we report on a large
breast cancer study involving 207 different patients. Utilizing

the fingerprint region between 912 and 1800 cm™, we
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investigate the diagnostic accuracy of QCL imaging and
consider the implications for high throughput, high accuracy
disease diagnosis.

B MATERIALS AND METHODS

Sample Preparation. Serial sections of formalin fixed
paraffin embedded breast tissue microarray (TMA) cores were
acquired from US Biomax, Rockville, MD, (TMA ID
BR20832). The TMA used in this study consists of 207 1
mm breast tissue biopsy cores, each from a different patient.
Pathological review indicated that 15 of the cores are
nonmalignant with the remaining 192 being malignant. A §
um section was floated onto a standard histology slide,
dewaxed, and underwent hematoxylin and eosin (H&E)
staining. An adjacent section was floated onto a BaF, slide
(Crystran Ltd,, Poole, UK) and did not undergo any
deparaffinization. Retaining the sample in wax removes the
risk of chemical alteration of the sample from clearing solvents
and is known to minimize resonant Mie scattering due to
refractive index matching."*

Infrared Chemical Imaging. Infrared chemical images
were collected using a Spero Quantum Cascade Laser (QCL)
infrared microscope (Daylight Solutions Inc., San Diego, CA,
United States). The imaging platform consists of four
separately tunable QCL modules enabling unrestricted access
to the fingerprint region between 912 and 1800 cm™'. The
microscope is coupled to a room temperature 480 X 480 focal
plane array microbolometer, eliminating the requirement of
cryogenic cooling and enabling continuous operation. Chemical
images were acquired in transmission mode using the 4X 0.1
NA low magnification objective with a resultant field of view of
approximately 2.02 X 2.02 mm and a corresponding nominal
pixel size of approximately 4.2 ym.

Prior to imaging, a background was acquired as a single tile
from an area of the slide which had been identified as being
tissue and paraffin free. Chemical images were collected in the
spectral range 912—1800 cm ™, utilizing a step size of 4 cm™" to
produce continuous frequency spectra. Each infrared tile
consisted of 230400 spectra, was comprised of 223 data
points, and took 5 min 45 s to collect.

A chemical image of the entire TMA was collected as an 11 X
13 mosaic consisting of 143 tiles and 33 million pixels acquired
over 13.6 h.

Data Preprocessing. All data were preprocessed with
MATLAB 2014a (The MathWorks Inc., Natick, MA, United
States) using functions written in house. Infrared spectra for
each biopsy core were extracted from the mosaic as a 313 X 313
X 223 datacube, consisting of 97 969 spectra, each with 223
data points. Spectra were quality tested to remove data
obtained from areas with little or no tissue using the height
of the amide I band with spectra having absorbance between
0.1 and 2 being retained. Principal component-based noise
reduction was used to improve signal-to-noise with the first 40
PCs being retained. Spectra were truncated between 1000 and
1800 cm™’, and the region describing the absorption bands of
wax (1350—1490 cm™) were removed. Each spectrum was
then vector normalized to correct for different thicknesses of
tissue and finally converted to its first derivative while
performing Savitzky—Golay smoothing using a window size
of nine data points.
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B RESULTS

QCL Chemical Imaging: Automated Histology. Chem-
ical images of each of the breast tissue cores were compared to
the H&E stained sections, and regions of epithelium, stroma,
blood, and necrosis were identified. Using the methods of
Fernandez,”® a spectral database was constructed from 74 cores
(61 malignant and 13 nonmalignant) consisting of 171610
epithelium, 111 960 stroma, 4431 blood, and 27 700 necrosis
spectra. Mean spectra, following quality testing and noise
reduction and prior to vector normalization and derivitization,
for each of the histological classes are shown in Figure 1.
Inspection of each mean spectrum clearly discerns significant
differences in band intensity and position for each of the
histological classes.
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Figure 1. Mean spectra of epithelium, stroma, blood, and necrosis
obtained using continuous frequency acquisition. The spectra were
quality tested and noise reduced prior to calculating the mean. The
spectral band 1350—1490 cm™' contaminated with paraffin response
was removed for clarity.

The 74 cores were then randomly separated into training and
testing cores using an 80:20 split consisting of 59 training and
15 test cores. The training and test cores used are detailed in
Table S-1. Separating the cores into training and testing prior to
constructing the classifier ensures that the test set is from
different patients to those in the training set and therefore
completely independent. A training database was then
constructed from the 59 training cores which consisted of
145 386 epithelium, 88205 stroma, 1766 blood, and 25 382
necrosis spectra. The optimal situation to prevent classifier bias
is for each class to consist of equal numbers of spectra.
However, this was not possible due to only a limited number of
cores containing blood or necrosis. Bias was minimized in the
training set by selecting equal numbers of spectra from each
class with the number randomly selected being the size of the
smallest class.

A Random Forest classifier”® (code available from http://
code.google.com/p/randomforest—matlab/) was then con-
structed using 1766 spectra per class. Each spectrum was
quality checked, noise reduced, vector normalized, and
derivitized prior to being used for training. Five hundred
trees were used during the construction of the classifier with the
number of variables selected at random to try to split each node
set to 15. The node size parameter, which limits how large each
decision tree can grow, was set to 10. The Random Forest
classifier was then tested on the independent test set which

consisted of 26 224 epithelium, 42 602 stroma, 2665 blood, and
2318 necrosis spectra from the 15 testing cores.

Each tree in the Random Forest “votes” for the class which it
predicts an unknown spectrum belongs to. The Random Forest
then chooses the class having the most votes over all the trees
in the forest (“majority rules”). Misclassification can occur
when similar votes are cast for each class or where there is only
a slim majority. Setting an acceptance threshold allows the
classifier to reject pixels when there is poor agreement on class
membership between the trees.

Confusion matrices provide a quantitative measure of
performance and enable the correctness of classification for
each class to be determined. Furthermore, the sources of
misclassification can be easily identified from a confusion
matrix, revealing which classes are difficult to discriminate
between. Table 1 shows the confusion matrix for the four-class

Table 1. Confusion Matrix Showing Classification Accuracy
As a Percentage Using an Acceptance Threshold of 0.6

predicted class

true class epithelium stroma blood necrosis
epithelium 97.02 2.97 0.01 0
stroma 5.60 94.33 0.05 0.03
blood 5.06 0 94.94 0
necrosis 0.67 0 0 99.33

system using an acceptance threshold of 0.6 (i.e., at least 60% of
trees must agree on class membership). Correctness of
classification rates are shown by the diagonal of the table
with all four classes having accuracies >94%. Bassan'’
previously reported on FTIR imaging of a serial section of
the same TMA on glass utilizing the amide A band for
discriminating between the same four tissue types. Classi-
fication accuracies reported by Bassan (epithelium = 98.25%,
stroma = 99.94%, blood = 100.00%, necrosis = 97.22%)
compare favorably with the results presented here.

The Random Forest classifier was then used to classify each
of the ~8 million pixels within the TMA chemical image.
Assigning each class a color allows rendering of a false color
image, which provides a visual representation of the classified
image. Figure 2a shows a high resolution brightfield image of a
mixed core (core AS) consisting primarily of epithelium and
stroma. Comparison of the classified image (Figure 2b) to the
brightfield image of the H&E stained section illustrates that
there is good agreement for each class. A high resolution

Figure 2. (a) Brightfield image of H&E stained serial section for core
AS and (b) false color image of the classified core rendered using
green (epithelium) and purple (stroma).
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brightfield H&E image of the entire TMA and the
corresponding classified image are shown in Figures S1 and
S2. In the majority of cores, there is good agreement between
the H&E and the classified image. Several classified cores are
observed to have only a limited number of pixels. An extreme
case of this is observed in the classified image of the last core of
the third row, where the majority of pixels are unclassified due
to lack of agreement between the trees on class membership. In
situations where the core cannot be satisfactorily classified, then
this would be flagged as a suspect core which would require
expert pathological review.

QCL Chemical Imaging: Cancer Diagnostics. Ulti-
mately, QCL chemical imaging will be adopted by clinicians
only if it can add value to current methods and lead to
improvements in patient treatment and care. Because
pathological review is currently the gold standard, improved
diagnostic accuracy is an unrealistic target and, in the absence
of longitudinal studies, difficult to prove. QCL chemical
imaging needs to be competitive with current diagnostic
capabilities while being capable of high throughput. At the
present time, no large scale studies have explored diagnostic
accuracy on tissue for high throughput QCL imaging with an
FPA. To address this, we investigate the discriminatory power
of QCL imaging for segmenting malignant and nonmalignant
tissue from a large number of patients.

Numerous examples exist in the literature of the discrim-
inatory power of infrared chemical imaging for differentiating
between normal and cancerous epithelium. Recent studies®”*"
have questioned this approach and suggest that stroma,
specifically adjacent stroma, may have a key role to play in
the initiation and progression of cancer. Recently, Pounder’”
reported on the difficulties associated with utilizing breast
epithelium pixel spectra for differentiating between normal and
cancerous tissue. Using 8 spectral metrics on the training data,
they produced an receiver operator characteristics (ROC) curve
with a cancer pixel level AUC of just 0.81. Furthermore,
because nonmalignant breast tissue is typically not particularly
glandular, this limits the number of epithelium spectra which
can be used for training and testing the classifier. In light of this,
we elected to use stroma rather than epithelium to explore the
diagnostic capabilities of QCL chemical imaging.

Stromal spectra were isolated from each of the 207 cores
using the Random Forest classifier to remove all pixels
belonging to any other class. Cores were then randomly split
into five subsets using fivefold cross-validation with one subset
to be used as an independent test and the remainder as a
training set. To improve data handling and computation times,
1000 spectra were randomly selected from each core, and a
training database was constructed. The training database for
each repeat typically consisted of approximately 140000
malignant and 13 000 nonmalignant spectra from 166 training
cores. Each stroma spectrum was then labeled as either
malignant or nonmalignant which was dependent on whether it
came from a malignant or nonmalignant core. We elected not
to distinguish between adjacent and distal stroma because this
requires manual annotation of each individual stromal pixel,
which can be cumbersome. Figure 3 shows the mean spectra
obtained following quality testing and noise reduction for
malignant and nonmalignant stroma. In contrast to the mean
spectra obtained for histology (Figure 1), the stroma spectra
are similar, and there does not appear to be significant
differences in peak intensity and position for each class.
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Figure 3. Mean spectra of malignant and nonmalignant stroma. The
spectra were quality tested and noise reduced prior to calculating the
mean. The spectral band at 1350—1490 cm™' contaminated with
paraffin response was removed for clarity.

A Random Forest classifier was constructed from the training
database with bias minimized by using all the nonmalignant
spectra and an equal number of randomly selected malignant
spectra. The classifier was constructed using 500 trees, and with
the number of variables used to attempt to split each node, set
to 15. The node size parameter which limits how large each tree
can grow was set to 1. The independent test set for each of the
S repeats typically consisted of approximately 36 000 malignant
and 2800 nonmalignant spectra from 41 testing cores.

The Random Forest classifier output provides an estimate of
the probability that a spectrum belongs to a particular class.
Adjusting the class probability threshold enables the trade off
between true positives and false positives to be visualized in the
form of ROC curves. A typical ROC curve for classification of
the independent test set is shown in Figure 4. Considering the
similarities between malignant and nonmalignant stromal
spectra, the ROC curves appear surprisingly good. The
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Figure 4. ROC plot obtained using Random Forest to classify the
independent test set for stroma. (AUC = 0.9582).
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resulting AUC value of 0.9582 indicates that there is good

differentiation between malignant and nonmalignant pixels.
The AUC values for the independent test sets for each of the

five repeats are shown in Table 2. All values are consistently

Table 2. AUC Values for Malignant Stroma for the
Independent Test Sets Based on the Five Repeats Using
Different Sets of Test Patients

run 1 2 3 4 S
AUC 0.9582 0.9184 0.9581 0.8972 0.9466

high, indicating that the choice of training and test patients has
only a minimal effect on classifier performance. Finally, a
confusion matrix was constructed for all independent test set
pixels for the five repeats. An acceptance threshold of 0.6 was
used, which allowed pixels to be rejected when fewer than 60%
of trees agree on the predicted class while retaining
approximately 90% of all stroma spectra. The resulting
confusion matrix in Table 3 reveals that 93.56% of malignant
stroma and 85.64% of nonmalignant stroma are correctly
classified.

Table 3. Confusion Matrix Obtained for All Independent
Test Set Pixels Using an Acceptance Threshold of 0.6

predicted class

true class malignant (%) nonmalignant (%)
malignant 93.56 6.44
nonmalignant 14.36 85.64

Automated Histopathology: Patient Cancer Diagno-
sis. Accurate discrimination between malignant and non-
malignant spectra is an important proof of concept for QCL
chemical imaging. However, practical application of QCL
imaging in the clinic will require accurate differentiation
between malignant and nonmalignant biopsy cores. We assess
the potential for QCL automated patient diagnostics by
subjecting each stromal pixel within each core to the Random
Forest classifier. Figures Sa(i)—c(i) show the brightfield images
of the H&E stained sections for two malignant and one
nonmalignant cores. A comparison of these images to Figures
Sa(ii)—c(ii) representing the histology demonstrates that there
is good agreement between the histologically classified image
and the H&E. Finally, all nonstromal pixels are removed, and
the cancer classifier is used to assign each stromal pixel as either
malignant or nonmalignant. Rendering malignant stromal pixels
red and nonmalignant green enables a false color image to be
formed. Figures Sa(iii) and b(iii) and Figure Sc(iii) show the
classification result for the two malignant and the nonmalignant
core, respectively. The malignant cores are dominated by red
pixels, indicating that the classifier can accurately identify
malignant stromal pixels. The nonmalignant core (Figure
Sc(iii)) is predominantly green, indicating that the classifier
correctly classifies most stromal pixels as being nonmalignant. A
small proportion of pixels at the edges of the core were
classified as malignant (red), but the vast majority of pixels
were classified as nonmalignant.

A bar chart displaying the proportion of stroma pixels
classified as malignant for each of the malignant cores is
displayed in Figure 6. The bar chart shows that for nearly all
patients the proportion of malignant stroma is close to 1. Out
of 192 malignant cores, four did not have any identifiable
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b(i)

c(i)

Figure S. a—c(i) Brightfield image of H&E stained section of two
malignant and one nonmalignant core, a—c(ii) false color image of
histology rendered using green (epithelium) and purple (stroma) to
illustrate predicted histological class, and a—c(iii) false color image of
malignancy rendered using green (nonmalignant stroma) and red
(malignant stroma).

40 1

Percentage malignant stroma

20

Cancer patients

Figure 6. Bar chart showing malignant stroma pixels as a percentage of
total stroma pixels for each of the 192 cancer patients. The dashed line
represents a threshold of 0.2.

stroma (as determined by Random Forest) and could not be
classified. The mean proportion of malignant stroma for the
remaining malignant cores is 95.3%, suggesting stroma is an
effective indicator of malignancy. Figure 7 shows the resulting
bar chart for the nonmalignant cores and there are striking
differences compared to the bar chart obtained for the
malignant cores. Two of the nonmalignant cores had high
levels of malignant stroma (36.17 and 24.12%), and these
appear to have been misclassified. Given the limited number of

DOI: 10.1021/acs.analchem.7b00426
Anal. Chem. 2017, 89, 7348—7355


http://dx.doi.org/10.1021/acs.analchem.7b00426

Analytical Chemistry

100

80 B

Percentage malignant stroma

Non-malignant patients

Figure 7. Bar chart showing malignant stroma pixels as a percentage of
total stroma pixels for each of the nonmalignant core patients. The
dashed line represents a threshold of 0.2, which enables 86.7%
correctness of classification of the nonmalignant cores.

nonmalignant cores available on the TMA, it is likely that the
classifier did not include sufficient interpatient variability to
classify the pixels within these two cores with high accuracy.
However, the mean malignant stroma proportion is just 7.25%
compared to 95.3% for the malignant cores, which suggests that
we can diagnose cancer by choosing an appropriate threshold
which we consider indicates malignancy. Utilizing a threshold
of 20% (0.2), Fernandez*® demonstrated that, in the case of
prostate cancer, highly accurate segmentation between patient-
matched benign and malignant epithelium could be achieved.

Applying a threshold of 0.2 to the bar chart in Figure 6
enables 100% accurate classification of all cores which had
identifiable stroma. Recall that 4 cores out of 192 did not
contain any stroma and could not be classified. It is important
to note that there were no false negatives (malignant diagnosed
as nonmalignant), which is a key deliverable for cancer
screening. In the nonmalignant case, all cores had identifiable
stroma, but there were 2 false positives (nonmalignant
diagnosed as malignant), resulting in 86.67% specificity. For
cancer screening, this would be an acceptable level because all
abnormal or suspect samples would be reviewed by a
pathologist to make a final diagnosis.

B DISCUSSION

Infrared chemical imaging has the potential to provide
complementary information to aid diagnosis, leading to
improved patient treatment and care. Despite significant
progress over the past decade, sample throughput is still a
key barrier to clinical translation.

QCL chemical imaging has emerged as a leading candidate
for high throughput infrared chemical imaging with a diagnostic
window compatible with clinical time scales. Current
investigations on QCL imaging for diagnostics are broadly in
two directions: focal plane array detection and single point
detection. QCL-based systems utilizing a large (480 X 480)
FPA allow the simultaneous acquisition of 230400 spectra,
thereby imaging large areas of tissue quickly and at high spatial
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resolution. Recently, doubts have been expressed as to the
veracity of the acquired data due to the poorly understood
impact of coherence effects. Some authors believe single point
acquisition mitigates, to some extent, coherence effects through
operating confocally.”® However, the clear disadvantage of
single point collection is that the sample has to be rastered at
every single point to image a given area of tissue. Nevertheless,
if a limited number of discrete frequencies are required, then
single point acquisition can achieve acquisition times similar to
those of FPA imaging. Tiwari’’ previously utilized a single
point QCL infrared microscope to image a 2.5 mm® area of
tissue. Utilizing a single frequency enabled the full area to be
acquired with a S um pixel size in approximately 15 s. However,
acquiring the same area using the fully accessible spectral range
(800—1800 cm™) increased the acquisition time to approx-
imately 50 min. For comparison, current FPA-based systems
would measure 4 mm?® at a single frequency, with 4.3 um pixel
size in approximately 5 s, and a continuous frequency spectrum
(912—1800 cm™) in 5.7S min. Given the throughput advantage
of an FPA-based QCL microscope, a key question is the impact
of coherence on spectral quality and classification accuracy. If
diagnostic accuracy can be competitive with the current gold
standard, ie., the pathologist, then FPA-based QCL imaging
has a significant throughput advantage over single point
imaging.

In this study, we investigated the potential of QCL (FPA)
chemical imaging for disease diagnosis. We demonstrated that
rapid QCL chemical imaging using continuous frequency
spectra can accurately discriminate between four histological
classes in breast tissue. Moreover, we showed that we can easily
discriminate between malignant and nonmalignant stroma
spectra with 93.56% sensitivity and 85.64% specificity on an
independent test set. These excellent rates of correct
classification suggest that coherence effects have little or no
impact on classification accuracy. On a patient basis, the 188
out of 192 malignant cores, which could be classified, were
classified with a sensitivity of 100%. Importantly, there were no
cases where a malignant core was classified as nonmalignant.
Nonmalignant patients were classified correctly with an
accuracy of 86.67%. These results compare favorably to those
reported by Sattlecker™ for ensemble support vector machine
(SVM) breast cancer type prediction using microcalcification
spectra, where 87.5% sensitivity and 75% specificity was
obtained.

The high sensitivity reported here opens up the possibility of
high throughput automated screening, enabling biopsies to be
triaged for pathological review. Screening requires that all
cancer cases are detected because any missed cases will result in
patient under-treatment. The 86.67% specificity reported here
is acceptable because the 13.33% of nonmalignant cores
misclassified would be reviewed by a pathologist to rule out
cancer. The key advantage of screening with this system is that
86.67% of the nonmalignant cores that were correctly classified
would not need to be reviewed by a pathologist. Clearly, there
are significant gains to be made with high throughput screening,
considering that approximately a quarter of all breast tissue
biopsies are benign but still undergo pathological review.”*

The preliminary results presented here demonstrate that high
classification accuracy of malignancy is achievable when using a
single TMA for training and testing the classifier. While
promising, we appreciate that training and testing on separate
TMAs would be a more robust demonstration of the potential
of QCL imaging for disease diagnosis. Utilizing multiple TMAs
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could potentially introduce confounding factors such as the
influence of the substrate, different thickness of tissue, and
variations in focus. Therefore, we believe that, although
promising, further work needs to be performed using a larger
number of patients over several separate TMAs to fully
demonstrate the potential of the technology for disease
diagnosis.

The key question that arises from this study relates to the
speed of continuous frequency imaging and whether it provides
sufficient throughput to be clinically viable. Rapid throughput
has always been the key advantage of discrete frequency
chemical imaging. While this is true, we believe that high
throughput chemical imaging is achievable using continuous
frequency spectra. Utilizing a breast cancer tissue microarray,
we analyzed 207 breast tissue biopsy cores in just 13.6 h, which
is equivalent to a core being acquired on average every 3 min 56
s. Even higher throughput could have been achieved by
optimizing the acquired spectral range. In this study, we elected
to acquire the entire fingerprint region between 912 and 1800
cm ™. Given the presence of wax bands between 1350 and 1490
cm ™" and the limited biochemical information between 912 and
1000 cm ™', a more intelligent approach would be to omit these
regions. We calculate that acquiring the range 1000—1350 and
1490—1800 cm™' would require 168 discrete frequencies
instead of 223. Assuming a linear relationship between
acquisition time and discrete frequencies, we estimate the
entire TMA could have been acquired in approximately 10.25 h
instead of 13.6 h. Optimizing the acquisition parameters would
translate to each core being acquired in approximately 2 min 58
s, which is a time scale likely to be acceptable to clinicians.

B CONCLUSIONS

In this study, we showed that FPA-based QCL imaging using
continuous frequency spectra enables highly accurate discrim-
ination between malignant and nonmalignant stroma. We
further showed that we can use high throughput automated
histopathology to accurately diagnose biopsy cores on a patient
basis. Coherence effects associated with FPA-based QCL
imaging appear to have only a minimal effect on classification
accuracy because the sensitivity and specificity reported here
are in broad agreement with similar studies using FTIR
imaging. The results reported here pave the way for FPA-based
discrete frequency imaging for disease diagnosis. Future studies
of FPA-based discrete frequency imaging using a large number
of patients are required to assess its full potential for high
throughput automated histopathology.
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